[1]
黄薇, 季宏丽, 裘进浩, 等. 二维声学黑洞对弯曲波的能量聚集效应[J]. 振动与冲击, 2017, 36(09): 51-57+92.
HUANG Wei, JI Hongli, QIU Jinhao, et al. Energy focusing effect of two-dimensional acoustic black hole on flexural waves[J]. Journal of Vibration and Shock, 2017, 36(09): 51-57+92.
[2] 何璞, 王小东, 季宏丽, 等. 基于声学黑洞的盒式结构全频带振动控制[J]. 航空学报, 2020, 41(04): 134-143.
HE Pu, WANG Xiaodong, JI Hongli, et al. Full-band vibration control of box-type structure with acoustic black hole[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(04): 134-143.
[3] Zhang L, Sun X, Dietrich J, et al. Enhanced energy transfer and multimodal vibration mitigation in an electromechanical acoustic black hole beam[J]. Journal of Sound and Vibration, 2023, 561: 117841.
[4] 赵楠, 王禹, 陈林, 等. 分布式声学黑洞浮筏系统隔振性能研究[J]. 振动与冲击, 2022, 41(13): 75-80.
ZHAO Nan, WANG Yu, CHEN Lin. Vibration isolation performance of distributed acoustic black hole floating raft system[J]. Journal of Vibration and Shock, 2022, 41(13): 75-80.
[5] Pelat A, Gautier F, Conlon S C, et al. The acoustic black hole: A review of theory and applications[J]. Journal of Sound and Vibration, 2020, 476: 115316.
[6] Krylov V V, Tilman F. Acoustic ‘black holes’ for flexural waves as effective vibration dampers[J]. Journal of Sound and Vibration, 2004, 274(3-5): 605-619.
[7] Georgiev V B, Cuenca J, Gautier F, et al. Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect[J]. Journal of Sound and Vibration, 2011, 330(11): 2497-2508.
[8] Ma L, Cheng L. Topological optimization of damping layout for minimized sound radiation of an acoustic black hole plate[J]. Journal of Sound and Vibration, 2019, 458: 349-364.
[9] Huang W, Zhang H, Inman D J, et al. Low reflection effect by 3D printed functionally graded acoustic black holes[J]. Journal of Sound and Vibration, 2019, 450: 96-108.
[10] Cheer J, Hook K, Daley S. Active feedforward control of flexural waves in an Acoustic Black Hole terminated beam[J]. Smart Materials and Structures, 2021, 30(3): 035003.
[11] Hook K, Cheer J, Daley S. Control of vibration in a plate using active acoustic black holes[J]. Smart Materials and Structures, 2022, 31(3): 035033.
[12] Raybaud G, Lee J Y, Jeon W, et al. On the control of the absorption of an Acoustic Black Hole by using attached point supports[J]. Journal of Sound and Vibration, 2023, 548: 117562.
[13] Leng J, Romero-García V, Pelat A, et al. Interpretation of the acoustic black hole effect based on the concept of critical coupling[J]. Journal of Sound and Vibration, 2020, 471: 115199.
[14] 彭飞, 张欣超, 张洪辉, 等. 声学黑洞铝型材板结构减振特性仿真研究[J]. 噪声与振动控制, 2024, 44(01): 75-79+141.
PENG Fei, ZHANG Xinchao, ZHANG Honghui, et al. Simulation Study on Vibration Reduction Characteristics of Acoustic Black Hole Aluminum Profile Plate Structures[J]. Noise and Vibration Control, 2022, 41(13): 75-80.
[15] Raybaud G, Pelat A, Ouisse M, et al. Zero reflections by a 1D acoustic black hole termination using thermally controlled damping[J]. Journal of Sound and Vibration, 2021, 510: 116282.
[16] Raybaud G, Ouisse M, Leng J, et al. Control of bending wave reflection at beam terminations by thermally tunable subwavelength resonators[J]. Journal of Sound and Vibration, 2022, 530: 116918.
[17] 万志威, 朱翔, 李天匀, 等. 含压电分流阻尼的声学黑洞梁振动特性研究[J]. 振动与冲击, 2022, 41(09): 113-119+135.
WAN Zhiwei, ZHU Xiang, LI Tianyun, et al. Vibration characteristics of acoustic black hole beam with piezoelectric shunt damping [J]. Journal of Vibration and Shock, 2022, 41(09): 113-119+135.
[18] 李宁, 张景绘. 连续梁的压电分流阻尼模型[J]. 应用力学学报, 2006, (03): 398-402+510.
LI Ning, ZHANG Jinghui. Piezoelectric shunt damping model for continuous beams[J]. Chinese Journal of Applied Mechanics, 2006, (03): 398-402+510.
[19] Deng J, Guasch O, Zheng L, et al. Semi-analytical model of an acoustic black hole piezoelectric bimorph cantilever for energy harvesting[J]. Journal of Sound and Vibration, 2021, 494: 115790.
[20] Thomas O, Deu J F, Ducarne J. Vibrations of an elastic structure with shunted piezoelectric patches: efficient finite element formulation and electromechanical coupling coefficients[J]. International Journal for Numerical Methods in Engineering, 2009, 80(2): 235-268.
[21] 付俊勇, 朱翔, 李天匀, 等. 含周期声学黑洞梁的板架结构振动特性[J]. 噪声与振动控制, 2023, 43(03): 21-26+33.
FU Junyong, ZHU Xiang, LI Tianyun, et al. Vibration Characteristics of Panel Structures Including Periodic Acoustic Black Hole Beams[J]. Noise and Vibration Control, 2023, 43(03): 21-26+33.
[22] Denis V, Gautier F, Pelat A, et al. Measurement and modelling of the reflection coefficient of an acoustic black hole termination[J]. Journal of Sound and Vibration, 2015, 349: 67-79.
[23] Ma L, Zhang S, Cheng L. A 2D Daubechies wavelet model on the vibration of rectangular plates containing strip indentations with a parabolic thickness profile[J]. Journal of Sound and Vibration, 2018, 429: 130-146.
[24] 曾鹏云, 郑玲, 左益芳, 等. 基于半解析法的一维圆锥形声学黑洞梁能量聚集效应研究[J]. 噪声与振动控制, 2018, 38(S1): 210-214.
ZENG Pengyun, ZHENG Ling, ZUO Yifang, et al. Analysis of the Energy Concentration Effect of Flexural Vibrations in Tapered Rods with Power-law Profile based on Semi-analytical Method [J]. Noise and Vibration Control, 2018, 38(S1): 210-214.
[25] Deng J, Zheng L, Zeng P, et al. Passive constrained viscoelastic layers to improve the efficiency of truncated acoustic black holes in beams[J]. Mechanical Systems and Signal Processing, 2019, 118: 461-476.
[26] Deng J, Gao N. Broadband vibroacoustic reduction for a circular beam coupled with a curved acoustic black hole via nullspace method[J]. International Journal of Mechanical Sciences, 2022, 233: 107641.
[27] 宋婷婷, 郑玲, 邓杰. 基于高斯展开法的周期声学黑洞宽频能量回收特性研究[J]. 振动与冲击, 2022, 41(10): 186-195.
SONG Tingting, ZHENG Ling, DENG Jie. Gaussian expansion method used in analysing the broadband energy harvesting characteristics of periodic acoustic black holes[J]. Journal of Vibration and Shock, 2022, 41(10): 186-195.
[28] 丁媛, 施凯耀, 郑玲. 基于高斯展开法的碟形声学黑洞宽频调谐减振机理研究[J]. 振动与冲击, 2024, 43(02): 291-298+342.
DING Yuan, SHI Kaiyao, ZHENG Ling. Semi-analytical modelling of a dish-shaped acoustic black hole coupling system based on the Gaussian expansion method and research on the vibration damping mechanism of broadband tuning[J]. Journal of Vibration and Shock, 2024, 43(02): 291-298+342.
[29]
Wan Z W, Zhu X, Li T Y, Fu J Y. A method for improving wave suppression ability of acoustic black hole plate in low-frequency range[J]. Thin-Walled Structures, 2023, 182: 110327.