冻土靶体抗侵彻特性试验与抗侵彻深度计算

谭仪忠1, 2, 戴伟1, 3, 李杰1, 李干1, 张中威1, 史小敏2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 250-256.

PDF(1991 KB)
PDF(1991 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 250-256.
冲击与爆炸

冻土靶体抗侵彻特性试验与抗侵彻深度计算

  • 谭仪忠1,2,戴伟1,3,李杰1,李干1,张中威1,史小敏*2
作者信息 +

Anti-penetration characteristics tests and anti-penetration depth calculation of frozen soil targets

  • TAN Yizhong1,2, DAI Wei1,3, LI Jie1, LI Gan1, ZHANG Zhongwei1, SHI Xiaomin*2
Author information +
文章历史 +

摘要

为深入研究冻土靶体的抗侵彻特性,开展了冻土靶体抗侵彻系列模型试验,得到了不同温度下冻土靶体抗尖卵型弹体侵彻成坑效应、弹道轨迹和侵彻深度等参数。试验结果表明,冻土靶体抗侵彻特性与其温度和弹体撞击速度密切相关,冻土温度相同,弹体撞击速度越大,冻土靶体表面成坑越大,抗侵彻深度越大,弹体侵彻速度相近,冻土温度越低冻土靶体表面成坑越小,抗侵彻深度小。为准确预测冻土靶体抗卵形弹体侵彻深度,引入考虑温度效应的摩尔-库伦准则,结合空腔膨胀理论对冻土靶体抗侵彻深度进行计算分析,与试验实测数据对比,理论预测值能够较准确反映冻土靶体抗侵彻深度与冻土温度和弹体侵彻速度间的关系。

Abstract

To study the anti-penetration characteristics of frozen soil targets deeply, model tests on the anti-penetration of frozen soil targets were carried out. We obtained the parameters such as cratering effect, ballistic trajectory and penetration depth of frozen soil targets under the impact of pointed egg-shaped projectiles at different temperatures. The test results show that at the same frozen soil temperature, the greater the impact velocity of the projectile, the larger the crater formed on the surface of the frozen soil target and the greater the depth of anti-penetration. At the similar impact velocity of the projectile, the lower the frozen soil temperature, the smaller the crater formed on the surface of the frozen soil target and the smaller the depth of anti-penetration. To accurately predict the penetration depth of the frozen soil target by the oval-shaped projectile, the Mohr-Coulomb criterion considering the temperature effect was introduced, and the calculation and analysis of the anti-penetration depth of the frozen soil target were carried out based on the cavity expansion theory. By comparing with the measured data from the tests, the theoretical prediction values can reflect the relationship between the anti-penetration depth of the frozen soil target, frozen soil temperature and the impact velocity of the projectile accurately.

关键词

冻土 / 抗侵彻 / 工程防护 / 空腔膨胀理论

Key words

frozen soil / anti-penetration / engineering protection / cavity expansion theory

引用本文

导出引用
谭仪忠1, 2, 戴伟1, 3, 李杰1, 李干1, 张中威1, 史小敏2. 冻土靶体抗侵彻特性试验与抗侵彻深度计算[J]. 振动与冲击, 2025, 44(9): 250-256
TAN Yizhong1, 2, DAI Wei1, 3, LI Jie1, LI Gan1, ZHANG Zhongwei1, SHI Xiaomin2. Anti-penetration characteristics tests and anti-penetration depth calculation of frozen soil targets[J]. Journal of Vibration and Shock, 2025, 44(9): 250-256

参考文献

[1] WANG D, LIU E L, YANG C S, et al. Dynamic mechanical characteristics of frozen subgrade soil subjected to freeze-thaw cycles[J]. Journal of Mountain Science, 2023,20(01):242-255.
[2] CUI G H, LIU Z Q, MA S X, et al. Dynamic characteristics of carbonate saline soil under freeze-thaw cycles in the seaonal frozen soil region[J]. Alexandria Engineering Journal, 2023,81:384-394.
[3] MA D D, XIANG H S, ZHOU Z W, et al. Study on Energy Dissipation Characteristic of Ice-Rich Frozen Soil in SHPB Compression Tests[J].Geofluids, 2022:2022.
[4] SWEIDAN A H , NIGGEMANN K, HEIDER Y, et al. Experimental study and numerical modeling of the thermo-hydro- mechanical processes in soil freezing with different frost penetration directions. Acta Geotechnica, 2022.17(01), 231-255.
[5] MA D D, YUAN J M; XIANG H S, et al. Dynamic impact t ests and temperature rise induced damage constitutive model of ice-rich frozen sandy soil[J].Mechaincs of Materials, 2023, 186:104787.
[6] BAZHENOV V G ,BRAGOV A M & KOTOV, V L. Experimental-theoretical study of the penetration of rigid projectiles and identification of soil properties.Journal of Applied Mechanics and Technical Physics,2009,50, 1011–1019.
[7] BOGUSLAVSKII Y, SALMAN A, DRABKIN S. Analysis of Vertical Projectile Penetration in Granular Soil[J]. Journal of Physics,D. Applied Physics: A Europhysics Journal,1996, 29(3):905-916.
[8] BAZHENOV V G, BRAGOV A M, KOTOV V L et al. An investigation of the impact and penetration of solids of revolution into soft earth,Journal of Applied Mathematics and Mechanics 67,611-620(2003)
[9] KUWIL B S, MPRENO J, SHAEFFER M, et al. The response of dry and wet silica sand to high velociry impact[J]. International Journal of Impact Engineering, 2024,186,104883.
[10]任保祥,陶钢.弹丸侵彻自然土弹道的试验研究与数值模拟[J].科学技术与工程,2018,18(1):28-33. 
REN B X, TAO G. Experimental Investigation and Numerical Simulation of Ballistic when Projectile Penetrating Natural Soil[J], Science Technology and Engineering,2018, 18(1):28-33.(in Chinese)
[11]GLAZOVA E G, ZEFIROV S V, KOCHETKOV A V. et al. Numerical modeling of normal impact and penetration of an axisymmetric body into frozen soil[J]. Mechanics of Solids,2015,50(5), 521-528.
[12]王麒杰,王健,刘锐.弹丸侵彻冻土实验及仿真[J].弹道学报, 2023,35(04):04-17.
WANG Q J, WANG J, LIU R. Experiment and Simulation of Projectile Penetrating Permafrost[J]. Journal of Ballistics , 2023,35(04):04-17.(in Chinese)
[13]邵伟.侵彻体撞击冻土摩擦升温计算方法研究[J].传感器与微系统, 2023,42(10):40-44.
SHAO W. Study on calculation method of friction temperature rise by penetrator impacting frozen soil[J]. Transducer and Microsystem Technologies, 2023,42(10): 40-44. (in Chinese)
[14]刘锐.弹丸对冻土侵彻作用研究[D].江苏:南京理工大学,2021.
LIU R. Research on the destructive effect of projectiles on permafrost[D]. Jiangsu: Nanjing University of Science& Technology,2021(in Chinese)
[15]马军平,谭仪忠,王昱蘅等.高原寒区多年冻土抗侵彻性能数值模拟研究[J].防护工程,2019, 41(01):25-30.
MA J P, TAN Y Z, WANG Y H, et al. Numerical simulation of penetration resistance of permafrostin plateau cold region[J]. Protective Engineering, 2019,41(01):25-30 (in Chinese).
[16]Ma D D, Yuan J M; Xiang H S, et al. Dynamic impact tests and temperature rise induced damage constitutive model of ice-rich frozen sandy soil[J].Mechaincs of Materials, 2023, 186:104787.
[17]ZHANG F L, ZHU Z W, FU T T, et al. Damage mechanism and dynamic constitutive model of frozen soil under uniaxial impact loading[J].Mechanics of Materials, 2020(140): 103217.
[18]FORRESTAL M J and TZOU D Y. A spherical cavity- expansion penetration model for concrete targets[J]. International Journal of Solids and Structures, 1997, 34(31-32):4127 -4146.
[19]]CUI G H, LIU Z Q, MA S X,et al. Dynamic characteristics of carbonate saline soil under freeze-thaw cycles in the seaonal frozen soil region[J]. Alexandria Engineering Journal, 2023,81:384-394.
[20]YOUNG C W. The development of empirical equations for predicting depth of an earth penetrating projectile[M]. Sandia National Laboratories: Albuquerque, NM, 1967.
[21]谭仪忠,刘元雪,张裕等.高寒高海拔多年冻土抗侵彻深度研究[J].振动与冲击,2015, 34 (22):9-12.
TAN Y Z, LIU Y X, ZHANG Y, et al. Penetration depth of projectile body into high-cold and high-altitude permafrost area[J].Journal of Vibration and Shock, 2015, 34 (22):9-12. (in Chinese)
[22]贺月香.土和冻土的动态力学性能及本构模型研究[D].北京:北京理工大学,2014.
HE Y X. Constitutive Model of Clay and Frozen Soil under Impact Loading[D]. Beijing, Beijing Institute of Technology,2014. (in Chinese)
[23]ZHU Z W, TANG W R, KANG Z. Dynamic deformation of frozen soil at a high strain rate: experiments and damage- coupled constitutive model[J]. Acta Mechanica Solida Sinica,2021,34: 895-910.
[24]李鹏飞,吕永柱,周涛,等.弹头形状对侵彻多层靶弹道的影响[J].含能材料,2021,29(02):124-131.
LI P F, LV Y Z, ZHOU T, et al. Influence of Nose Shape of Projectile on the Penetration Trajectory of Multilayer Target[J]. Chinese Journal of Energetic Materials, 2021,29(02):124-131. (in Chinese)
[25]程怡豪,邓国强,李干,等.分层地质类材料靶体抗超高速侵彻模型实验[J].爆炸与冲击,2019,39(07):82-90.
CHENG Y H, DENG G Q, LI G, et al. Model experiments on penetration of layered geological material targets by hypervelocity rob projectilesin[J]. Explosion and Shock Waves, 2019,39(07):82-90. (in Chinese)
[26]李干,李杰,张中威,等.超高速侵彻及地冲击效应试验技术  与应用[J].防护工程,2023,45(03):71-78.
LI G, LI J, ZHANG Z W, et al. Experiment techniques and applications of hyper-velocity penetration and ground shock effect[J]. Protective Engineering, 2023,45(03):71-78. (in Chinese) 

PDF(1991 KB)

Accesses

Citation

Detail

段落导航
相关文章

/