冲击条件下变间隙磁流变缓冲器模型比较分析

付本元, 谭春海, 邹政, 舒锐志, 金辉

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 257-265.

PDF(2847 KB)
PDF(2847 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 257-265.
冲击与爆炸

冲击条件下变间隙磁流变缓冲器模型比较分析

  • 付本元,谭春海,邹政*,舒锐志,金辉
作者信息 +

Comparative analysis of variable gap MR buffer models under impact condition

  • FU Benyuan, TAN Chunhai, ZOU Zheng*, SHU Ruizhi, JIN Hui
Author information +
文章历史 +

摘要

采用阻尼间隙逐渐减小流道结构的变间隙磁流变缓冲器,是一种因磁流变胶泥流速下降致使缓冲力衰减的结构补偿思路,然而变间隙流道结构补偿效果受制于力学模型对缓冲器动力学行为预测的准确性,因此构建准确的动力学模型是变间隙流道结构补偿缓冲力衰减的关键因素。为此,采用微分思想分析变间隙流道的阻尼力,并构建分别考虑局部损耗、惯性效应及两者共同作用的动力学模型,进而对比分析各模型预测的准确性。采用微分思想将变间隙流道分为若干微元,构建Herschel-Bulkley (HB)模型得到流道阻尼力;考虑局部损耗,构建了HB-Minor Losses (HBM)动力学模型;考虑惯性效应,基于微分思想将惯性效应产生的阻尼力沿轴向转换为N等分微元惯性效应阻尼力叠加分析,建立了HB-Inertia Losses (HBI)模型;综合考虑惯性效应和局部损耗的影响,构建了同时包含惯性效应和局部损耗的HB-Minor-Inertia Losses (HBMI)模型。为验证理论模型的准确性,制作了一种变间隙磁流变缓冲器样机,并开展不同冲击条件下缓冲器动力学性能测试,结果显示该缓冲器具有良好的可控性;与试验结果对比,HB、HBM、HBI、HBMI模型的峰值力最大相对误差分别为17.7%、11.1%、15.8%、1.2%,动态范围相对误差分别为7.4%、1.7%、7.2%、1.0%,表明HBMI模型预测变间隙磁流变缓冲器的动力学行为准确性最高。

Abstract

The variable gap magnetorheological variable energy absorber, which adopts a flow channel structure with a gradually decreasing gap, is a structural compensation idea that relies on the decrease in the velocity of the magnetic fluid gel due to the attenuation of the buffering force. However, the compensation effect of the variable gap flow channel structure is limited by the accuracy of the mechanical model in predicting the dynamic behaviour of the buffer. Therefore, constructing an accurate dynamic model is a key factor in compensating for the attenuation of the buffering force in the variable gap flow channel structure. To this end, the differential thinking is used to analyse the damping force of the variable gap flow channel, and a dynamic model that considers local losses, inertial effects, and their combined action is constructed. This model is used to compare and analyse the accuracy of various model predictions. By using differential thinking, the variable gap flow channel is divided into several microelements, and the Herschel-Bulkley (HB) model is used to obtain the flow channel damping force. Considering local losses, the HB-Minor Losses (HBM) dynamic model is constructed. By considering the inertial effect, the differential thinking is used to convert the damping force produced by the inertial effect into the sum of the damping forces of N microelements along the axial direction, and the HB-Inertia Losses (HBI) model is established. By comprehensively considering the effects of both inertial effect and local loss, a model that contains both inertial effect and local loss, called HB-Minor-Inertia Losses (HBMI), is constructed. To verify the accuracy of the theoretical model, a prototype of the variable gap magnetic fluid buffer was produced, and dynamic performance tests of the buffer under different impact conditions were carried out. The results showed that the buffer has good controllability. When compared with the experimental results, the peak force maximum relative error of the HB, HBM, HBI and HBMI models are 17.7%,11.1%,15.8% and 1.2% respectively, and the dynamic range relative error are 7.4%, 1.7%, 7.2%, and 1.0% respectively, indicating that the HBMI model predicts the dynamic behaviour of the variable gap magnetic fluid buffer with the highest accuracy.

关键词

磁流变缓冲器 / 动力学行为 / 变间隙 / 局部损耗 / 惯性效应

Key words

magnetorheological energy absorber / dynamic behavior / variable gap / minor losses / inertia losses

引用本文

导出引用
付本元, 谭春海, 邹政, 舒锐志, 金辉. 冲击条件下变间隙磁流变缓冲器模型比较分析[J]. 振动与冲击, 2025, 44(9): 257-265
FU Benyuan, TAN Chunhai, ZOU Zheng, SHU Ruizhi, JIN Hui. Comparative analysis of variable gap MR buffer models under impact condition[J]. Journal of Vibration and Shock, 2025, 44(9): 257-265

参考文献

[1] 祝安定, 李祥, 杨森等. 一种纵向垂向二维振动集成半主动可控座椅悬架系统的试验研究[J]. 合肥工业大学学报(自然科学版), 2021, 44(3):304-310.
ZHU An-ding, LI Xiang, YANG Sen, et al. Experimental study on a longitudinal and vertical two-dimensional vibration integrated semi-active controllable seat suspension system [J]. Journal of Hefei University of Technology (Natural Science Edition), 2021, 44(3): 304-310.
[2] Yang G, Spencer B F, Carlson J D, et al. Large-scale MR fluid dampers: modeling and dynamic performance considerations [J]. Earthquake Engineering & Engineering Vibration, 2002, 24(3): 309-323.
[3] Sun H X, Wang X Y, Chen Z Q, et al. Wind-induced torsional vibration control effect of bridge with magnetorheological tuned liquid column damper [J]. China Journal of Highway & Transport, 2010, 23(1): 58-65.
[4] 彭志召, 张进秋, 岳杰, 等. 具有并联常通孔的磁流变阻尼器设计与分析[J]. 机械工程学报, 2022, 51(8): 172-177. 
PENG Zhi-zhao, ZHANG Jin-qiu, YUE Jie, et al. Design and analysis of magnetorheological damper paralleling with constant throttling orifices [J]. Journal of Mechanical Engineering, 2022, 51(8): 172-177.
[5] Zhang W L, Shi F, Song C, et al. Ultra-precision optical processing technology for large-aperture laser optics: Polishing path and technical parameter of arrayed magnetorheological finishing (AMRF) [J]. Optics and Laser Technology, 2024, 170: 110253.
[6] Kunal A, Kumar A S. Magnetorheological finishing process for improved performance of polymer gears [J]. Materials and Manufacturing Processes, 2023, 38(10): 1191-1208.
[7] Jitender K, Gian B. Analysis and improvement of driver’s ride comfort by implementing optimized hybrid semi-active vibration damper with fuzzy-PID controller [J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2023, 47(4): 2243-2255.
[8] Ranhee Y, Abebaw B N, Wonhee Y, et al. Bi-exponential model and inverse model of magnetorheological damper for the semi-active suspension of a capsule vehicle [J]. Measurement and Control, 2023, 56(3-4): 558-570.
[9] Wang M X, Pang H, Luo J B, et al. On an enhanced back propagation neural network control of vehicle semi-active suspension with a magnetorheological damper [J]. Transactions of the Institute of Measurement and Control, 2023, 45(3): 512-523.
[10] Ramin R Y. Real-time hybrid simulation for a base-isolated building with the transmissibility-based semi-active controller [J]. Journal of Intelligent Material Systems and Structures, 2022, 33(17): 2228-2240.
[11] Sourav D, Arunasis C, Sandip D. Reliability based optimal tuning of magneto-rheological elastomer for efficient structural control against non-stationary ground motion [J]. Journal of Earthquake Engineering, 2022, 26(16): 8552-8576.
[12] Yu J T, Yang Y, Fan Y F, et al. Seismic response study of L-shaped frame structure with magnetorheological dampers [J]. Applied Sciences, 2022, 12(12): 5976.
[13] 寿梦杰, 廖昌荣, 叶宇浩, 等. 冲击载荷下磁流变缓冲器的动力学行为[J]. 机械工程学报, 2019, 55(1):72-80.
SHOU Meng-jie, LIAO Chang-rong, YE Yu-hao, et al. Dynamic behavior of magnetorheological energy absorber under impact loading [J]. Journal of Mechanical Engineering, 2019, 55(1): 72-80.
[14] 杜新新, 甘斌, 简晓春, 等. 考虑壁面滑移的磁流变胶泥缓冲器设计理论与落锤冲击试验[J]. 振动与冲击, 2021, 40(8): 201-208.
DU Xin-xin, GAN Bin, JIAN Xiao-chun, et al. Design methodology for magnetorheological energy absorbers considering wall slip and falling weight impact tests [J]. Journal of Vibration and Shock, 2021, 40(8): 201-208.
[15] Fu B , Liao C , Li Z , et al. Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow mode [J]. Smart Materials and Structures, 2017, 26(2): 025025.
[16] Mao M, Hu W, Choi Y T, et al. Experimental validation of a magnetorheological energy absorber design analysis [J]. Journal of Intelligent Material Systems and Structures, 2020, 25(3): 352-363.
[17] 胡红生, 王炅, 钱苏翔, 等. 冲击载荷下的磁流变减振器动力学建模与滑模控制[J]. 机械工程学报, 2021, 47(13):84-91.
HU Hong-sheng, WANG Jiong, QIAN Su-xiang, et al. Dynamic modeling and sliding controllor of MR shock absorber under impact load [J]. Journal of Mechanical Engineering, 2021,47(13): 84-91.
[18] 董小闵, 丁飞耀, 管治, 等. 面向高速的磁流变缓冲器多目标优化设计及性能研究[J]. 机械工程学报, 2021, 50(5): 127-134.
DONG Xiao-min, DING Fei-yao, GUAN Zhi, et al. Multi-objective optimization design and performance research of high-speed magnetorheological buffer [J]. Journal of Mechanical Engineering, 2021, 50(5): 127-134.
[19] 李祝强, 廖昌荣, 付本元, 等.基于多级径向节流与柱状波纹压溃的碰撞盒研究[J].振动与冲击, 2020, 37(3): 14-21.
LI Zhu-qiang, LIAO Chang-rong, FU Ben-yuan, et al. Study on collision box based on multi-level radial throttling and cylindrical corrugated crushing [J]. Journal of Vibration and Shock, 2020, 37(3): 14-21.
[20] Fu B Y, Zheng X M, Li Z Q, et al. A dynamic model and parameter identification of high viscosity magnetorheological fluid-based energy absorber with radial flow mode [J]. Molecules, 2021, 26(22): 7059.
[21] Ou Y Q, Hu H S, Qian C, et al. Investigation of the influence of magnetic field distribution on the magnetorheological absorber with individually controllable coils [J]. IEEE Transactions on Magnetics, 2019, 55(8): 1-13.
[22] 侯保林, 郑杰, 郑鹏飞. 某单缸双通道磁流变阻尼器的时间响应特性分析[J]. 振动与冲击, 2020, 39(5): 177-182.
HOU Bao-lin, ZHENG Jie, ZHENG Peng-fei. Time response characteristics of a single-cylinder dual-channel MR damper [J]. Journal of Vibration and Shock, 2020, 39(5): 177-182.
[23] 董小闵, 丁飞耀, 管治, 等. 面向高速的磁流变缓冲器多目标优化设计及性能研究[J]. 机械工程学报, 2014, 50(5): 127-134.
DONG Xiao-min, DING Fei-yao, Guan Zhi, et al. Multi-objective optimization and performance research of magneto-rheological absorber under high speed [J]. Journal of Mechanical Engineering, 2014, 50(5): 127-134.
[24] 刘驰, 付本元, 居本祥, 等. 变间隙磁流变胶泥缓冲器理论研究与试验验证[J]. 振动与冲击, 2023, 42(16):120-128+154.
LIU Chi, FU Ben-yuan, JU Ben-xiang, et al. Theoretical study and experimental verification of variable gap magnetorheological cement buffer [J]. Journal of Vibration and Shock, 2023, 42(16):120-128+154.
[25] 谢磊, 廖昌荣, 周治江, 等. 基于弹性胶泥的新型高性能可压缩磁流变液[J]. 材料研究学报, 2014, 28(11): 821-827.
XIE Lei, LIAO Chang-rong, ZHOU Zhi-jiang, et al. A novel high-performance compressible magnetorheological fluid based on elastomeric clay [J]. Chinese Journal of Materials Research, 2014, 28(11): 821-827.
[26] Xie L, Choi Y, Liao C, et al. Long term stability of magnetorheological fluids using high viscosity linear polysiloxane carrier fluids [J]. Smart Materials and Structures, 2016, 25(7): 075006. 

PDF(2847 KB)

Accesses

Citation

Detail

段落导航
相关文章

/