金属材料挤出成型(Metal Material Extrusion, MME)是采用金属粉末与聚合物粘结剂混合丝材为原料,通过成型、脱脂和烧结工艺(Shaping-Debinding-Sintering, S-D-S)制造纯金属零部件的一种增材制造技术。随着MME技术的发展,亟需对其制品的抗冲击性能进行研究,然而相关信息非常匮乏。本文制备了不同过程参数下的MME试件,并采用夏比摆锤冲击试验研究了其抗冲击性能,探讨了成型方向、填充角度、挤出温度、床温及成型速度等过程参数对试件冲击吸收功的影响。结果表明,填充角度为45°时,侧置方向成型试件的抗冲击性能最佳,水平方向次之,竖直方向最差;而在0°填充角度下,水平方向成型试件性能最好;进一步提高挤出温度、床温并降低成型速度,可以显著增强试件的抗冲击性能。研究结果为优化MME成型参数提供了理论依据,拓展了其在承受冲击载荷场景下的应用潜力。
Abstract
Metal Material Extrusion (MME) technology, using a mixture of metal particles and polymer binders as materials, is one of the additive manufacturing techniques producing pure metal parts through shaping, debinding and sintering processes (S-D-S). This paper aims to systematically study the impact resistance performance of 17-4PH stainless steel parts fabricated by Metal Material Extrusion (MME) to address the lack of attention given to this property in existing research. Six groups of specimens were prepared, and their impact resistance was evaluated using Charpy impact tests. The experiments investigated the effects of forming direction, infill angle, extrusion temperature, bed temperature, and forming speed on the impact absorption energy of the specimens. The results indicated that, at a 45° infill angle, the edge-oriented specimens exhibited the highest impact resistance, followed by the horizontally-oriented specimens, with the vertically-oriented ones performing the worst. At a 0° infill angle, the horizontally-oriented specimens demonstrated the best performance. Moreover, increasing extrusion temperature and bed temperature while reducing forming speed significantly improved the impact resistance of the specimens. The findings provide theoretical support for optimizing MME forming parameters and expand its potential applications in scenarios requiring impact load resistance.
关键词
挤出成型 /
17-4PH不锈钢 /
夏比摆锤冲击试验 /
抗冲击性能
{{custom_keyword}} /
Key words
Metal Material Extrusion /
17-4PH stainless steel /
Charpy impact test /
impact resistance performance.
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Roshchupkin S, Kolesov A, Tarakhovskiy A, et al. A brief review of main ideas of metal fused filament fabrication[C]. International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTME), 2020, 38: 2063-2067.
[2] Lotfizarei Z, Mostafapour A, Barari A, et al. Overview of debinding methods for parts manufactured using powder material extrusion[J]. Additive Manufacturing, 2023, 61: 103335.
[3] Caminero M A, Romero A, Chacón J M, et al. Additive manufacturing of 316L stainless-steel structures using fused filament fabrication technology: mechanical and geometric properties[J]. Rapid Prototyping Journal, 2021, 27(3): 583-591.
[4] Quarto M, Carminati M, D'urso G. Density and shrinkage evaluation of AISI 316L parts printed via FDM process[J]. Materials and Manufacturing Processes, 2021, 36(13): 1535-1543.
[5] Suwanpreecha C, Manonukul A. On the build orientation effect in as-printed and as-sintered bending properties of 17-4PH alloy fabricated by metal fused filament fabrication[J]. Rapid Prototyping Journal, 2022, 28(6): 1076-1085.
[6] Thompson Y, Zissel K, Förner A, et al. Metal fused filament fabrication of the nickel-base superalloy IN 718[J]. Journal of Materials Science, 2022, 57(21): 9541-9555.
[7] Thompson Y, Gonzalez-Gutierrez J, Kukla C, et al. Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel[J]. Additive Manufacturing, 2019, 30: 100861.
[8] Alkindi T, Alyammahi M, Susantyoko R A, et al. The effect of varying specimens' printing angles to the bed surface on the tensile strength of 3D-printed 17-4PH stainless-steels via metal FFF additive manufacturing[J]. Mrs Communications, 2021, 11(3): 310-316.
[9] Ghadimi H, Jirandehi A P, Nemati S, et al. Effects of Printing Layer Orientation on the High-Frequency Bending-Fatigue Life and Tensile Strength of Additively Manufactured 17-4 PH Stainless Steel[J]. Materials, 2023, 16(2): 469.
[10] Tosto C, Tirillò J, Sarasini F, et al. Hybrid Metal/Polymer Filaments for Fused Filament Fabrication (FFF) to Print Metal Parts[J]. Applied Sciences-Basel, 2021, 11(4): 1444.
[11] Wang C Y, Mai W, Shi Q L, et al. Effect of Printing Parameters on Mechanical Properties and Dimensional Accuracy of 316L Stainless Steel Fabricated by Fused Filament Fabrication[J]. Journal of Materials Engineering and Performance, 2023, 23: 8848.
[12] Tosto C, Miani F, Cicala G. The Impact of Fused Filament Fabrication (FFF) Printing Profiles on 17-4 PH Green and Sintered Parts[C]. 6th International Conference on Design and Technologies for Polymeric and Composites Products (POLCOM), 2022, 411(1).
[13] Carminati M, Quarto M, D'urso G, et al. A comprehensive analysis of AISI 316L samples printed via FDM: structural and mechanical characterization[J]. Key Engineering Materials, 2022, 926: 46-55.
[14] Kedziora S, Decker T, Museyibov E, et al. Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing[J]. Materials, 2022, 15(18).
[15] Léonard F, Tammas-Williams S. Metal FFF sintering shrinkage rate measurements by X-ray computed tomography[J]. Nondestructive Testing and Evaluation, 2022, 37(5): 631-644.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}