复合多尺度包络模糊熵在滚动轴承故障诊断中的应用

李姜宏1, 2, 郑近德1, 2, 潘海洋1, 2, 程 健1, 2, 童靳于1, 2

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 274-281.

PDF(2114 KB)
PDF(2114 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 274-281.
故障诊断分析

复合多尺度包络模糊熵在滚动轴承故障诊断中的应用

  • 李姜宏1, 2, 郑近德*1, 2, 潘海洋1, 2, 程 健1, 2, 童靳于1, 2
作者信息 +

Application of composite multiscale envelope fuzzy entropy in rolling bearing fault diagnosis

  • LI Jianghong1,2, ZHENG Jinde*1,2, PAN Haiyang1,2, CHENG Jian1,2, TONG Jinyu1,2#br#
Author information +
文章历史 +

摘要

模糊熵(Fuzzy entropy, FE)自提出以来就被广泛用于滚动轴承振动信号的时间序列复杂性度量,但模糊熵在单一时间序列的分析中可能无法充分捕获轴承振动信号所有故障特征。针对这一弊端,本文定义出一种包络模糊熵(Envelope fuzzy entropy, EFE)作为新的复杂性度量指标。进一步利用复合粗粒化的方式对时间序列的包络信号进行复合多尺度处理,提出了复合多尺度包络模糊熵(Composite multi-scale envelope fuzzy entropy, CMEFE),旨在全面揭示信号的故障特征。此外,通过仿真信号验证了CMEFE能够区分不同类型的模拟信号,对比其他非线性动力学方法,结果表明本文提出的方法对于不同模拟信号的区分效果更为显著。在此基础上,提出一种基于复合多尺度包络模糊熵与萤火虫优化支持向量机的滚动轴承故障诊断方法。与现有方法进行对比,验证了该方法的可行性与优越性。

Abstract

Fuzzy entropy (FE) has been widely used to measure the complexity of time series of rolling bearing vibration signals since it was put forward, but it may not fully capture all the fault features of bearing vibration signals in the analysis of a single time series. Aiming at this disadvantage, this paper defines an Envelope fuzzy entropy, EFE) as a new complexity measure. Furthermore, the complex multi-scale processing of the envelope signal of time series is carried out by using the complex coarse graining method, and the composite multi-scale envelope fuzzy entropy (CMEFE) is proposed, aiming at comprehensively revealing the fault characteristics of the signal. In addition, it is verified by simulation signals that CMEFE can distinguish different types of analog signals. Compared with other nonlinear dynamics methods, the results show that the proposed method is more effective in distinguishing different analog signals. On this basis, a fault diagnosis method of rolling bearing based on composite multi-scale envelope fuzzy entropy and firefly optimization support vector machine is proposed. Compared with the existing methods, the feasibility and superiority of this method are verified.

关键词

模糊熵 / 包络模糊熵 / 多尺度模糊熵 / 复合多尺度包络模糊熵 / 萤火虫优化支持向量机 / 滚动轴承故障诊断

Key words

Fuzzy entropy / Envelope fuzzy entropy / Multi scale fuzzy entropy / Composite multi-scale envelope fuzzy entropy / Firefly optimization support vector machine / Fault diagnosis of rolling bearings

引用本文

导出引用
李姜宏1, 2, 郑近德1, 2, 潘海洋1, 2, 程 健1, 2, 童靳于1, 2. 复合多尺度包络模糊熵在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2025, 44(9): 274-281
LI Jianghong1, 2, ZHENG Jinde1, 2, PAN Haiyang1, 2, CHENG Jian1, 2, TONG Jinyu1, 2. Application of composite multiscale envelope fuzzy entropy in rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2025, 44(9): 274-281

参考文献

[1] 苗永浩,石惠芳,李晨辉,等. 谐波特征模式分解方法在轴承故障诊断中的应用[J]. 机械工程学报,2023, 59(21):234-244.
Miao Yong-hao, Shi Hui-fang, Li Chen-hui, et al. Application of harmonic characteristic mode decomposition method in bearing fault diagnosis [J]. Journal of Mechanical Engineering, 2023, 59(21): 234-244
[2] Lu Z, Yan X, Wang Z, et al. Compound fault diagnosis of rolling bearings based on AVMD and IMOMEDA[J]. Measurement Science and Technology,2024,35(6):242.
[3] Gao S, Wang Q, Zhang Y. Rolling bearing fault diagnosis based on CEEMDAN and refined composite multiscale fuzzy entropy[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-8.
[4] Zhang Y, Ren G, Wu D, et al. Rolling bearing fault diagnosis utilizing variational mode decomposition based fractal dimension estimation method[J]. Measurement,2021,181:109614.
[5] Yan R, Gao X R. Approximate Entropy as a diagnostic tool for machine health monitoring[J]. Mechanical Systems and Signal Processing,2007,21(2):824-839.
[6] Y S J R, R J M. Physiological time-series analysis using approximate entropy and sample entropy[J]. American journal of physiology. Heart and circulatory physiology,2000,278(6).
[7] Xiao an Y, Ya dong X, Min ping J. Intelligent Fault Diagnosis of Rolling-Element Bearings Using a Self-Adaptive Hierarchical Multiscale Fuzzy Entropy[J]. Entropy,2021,23(9):1128-1128.
[8] Delgado-Bonal A, Marshak A. Approximate entropy and sample entropy: A comprehensive tutorial[J]. Entropy,2019,21(6):541.
[9] 陈伟婷. 基于熵的表面肌电信号特征提取研究[D]. 上海交通大学,2008.
Chen Wei-ting Research on entropy based feature extraction of surface electromyography signals [D]. Shanghai Jiao Tong University, 2008.
[10] Wang X, Si S, Li Y. Variational embedding multiscale diversity entropy for fault diagnosis of large-scale machinery[J]. IEEE Transactions on Industrial Electronics,2021,69(3):3109-3119.
[11] Zheng J, Chen Y, Pan H, et al. Composite multi-scale phase reverse permutation entropy and its application to fault diagnosis of rolling bearing[J]. Nonlinear Dynamics,2023,111(1):459-479.
[12] Liu H, Han M. A fault diagnosis method based on local mean decomposition and multi-scale entropy for roller bearings[J]. Mechanism and machine Theory,2014,75:67-78.
[13] 郑近德,陈敏均,程军圣,等. 多尺度模糊熵及其在滚动轴承故障诊断中的应用[J]. 振动工程学报,2014, 27(01):145-151.
Zheng Jin-de, Chen Min-jun, Cheng Jun-sheng, et al. Multi scale fuzzy entropy and its application in fault diagnosis of rolling bearings [J]. Journal of Vibration Engineering, 2014, 27(01): 145-151. 
[14] 郑近德,潘海洋,程军圣,等. 基于复合多尺度模糊熵的滚动轴承故障诊断方法[J]. 振动与冲击,2016, 35(08):116-123.
Zheng Jin-de, Pan Hai-yang, Cheng Jun-sheng, et al. Fault diagnosis method for rolling bearings based on composite multiscale fuzzy entropy [J]. Vibration and Impact, 2016, 35(08): 116-123. 
[15] Chen B, Zhang W, Gu J X, et al. Product envelope spectrum optimization-gram: An enhanced envelope analysis for rolling bearing fault diagnosis[J]. Mechanical Systems and Signal Processing,2023,193:110270.
[16] 赵建岗,宁  静,宁云志,等. 基于多尺度排列熵和线性局部切空间排列的机械故障诊断特征提取[J]. 振动与冲击,2021, 40(13):136-145.
Zhao Jian-gang, Ning Jing, Ning Yun-zhi, et al. Feature extraction for mechanical fault diagnosis based on multi-scale permutation entropy and linear local tangent space permutation [J]. Vibration and Shock, 2021, 40(13): 136-145.
[17] Olatomiwa L, Mekhilef S, Shamshirband S, et al. A support vector machine–firefly algorithm-based model for global solar radiation prediction[J]. Solar Energy,2015,115.
[18] Smith A W, Randall B R. Rolling element bearing diagnostics using the Case Western Reserve University data: A benchmark study[J]. Mechanical Systems and Signal Processing,2015,64-65.
[19] Kobak D, Berens P. The art of using t-SNE for single-cell transcriptomics[J]. Nature communications,2019,10(1):5416. 

PDF(2114 KB)

Accesses

Citation

Detail

段落导航
相关文章

/