本研究建立了常曲率壳结构的能量辐射传递模型,以预测高频径向点激励下结构的能量响应。基于Donnell-Mushtari薄壳理论推导了常曲率壳的振动控制方程,获得了波传播特性参数。利用驻项法近似求得了弯曲波输入功率辐射强度的方向函数。根据能量密度控制方程求得了能量密度和功率流强度的核函数。结构内部任一点的能量由实源产生的能量和边界虚源产生的能量叠加求得。数值算例计算了三种典型常曲率壳结构的能量响应,并与模态叠加法和振动传导法的计算结果进行了对比,验证了模型的准确性。最后讨论了频率、曲率半径及阻尼对常曲率壳结构能量响应的影响。结果表明,曲率半径和激励频率均会影响壳结构波传播特性和能量分布特征, 和 方向曲率半径差距越小,弯曲波传播的方向性越小;曲率半径越小,结构平均能量密度越大;频率越高,弯曲波传播的方向性越小,结构能量密度衰减速度越快。
Abstract
This study established an energy radiation transfer model for constant curvature shell structures to predict the energy response of structures under high-frequency radial point excitation. Based on Donnell-Mushtari thin shell theory, the vibration control equation of a constant curvature shell was derived and the wave propagation characteristic parameters were obtained. The directional function of the input power radiation intensity of bending waves was approximately obtained using the phase stationary method. The kernel functions of energy density and power flow intensity were obtained based on the energy density control equation. The energy at any point within the structure can be obtained by superposition the energy generated by the real source and the energy generated by the boundary virtual sources. The energy responses of three typical constant curvature shell structures were calculated, and the results were compared with the modal superposition method and vibrational conductivity approach to verify the accuracy of the proposed model. Finally, the influence of frequency, curvature radius, and damping on the energy response of constant curvature shell structures was discussed. Numerical results indicate that both curvature radius and excitation frequency can affect the wave propagation characteristics and energy distribution of shell structures. The smaller the difference is in curvature radius in the and directions, the smaller the directionality of bending wave propagation; The smaller the curvature radius is, the higher the average energy density of the structure; The higher the frequency is, the less directional the propagation of bending waves, and the faster the decay rate of structural energy density.
关键词
常曲率壳;Donnell-Mushtari理论 /
能量辐射传递模型;能量密度;高频振动
{{custom_keyword}} /
Key words
constant curvature shell /
Donnell-Mushtari theory /
radiative energy transfer model /
energy density /
high frequency vibration
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] QATU M S, ASADI E. Vibration of doubly curved shallow shells with arbitrary boundaries[J]. Applied Acoustics, 2012, 73(1): 21-27.
[2] HONG J, HE X, ZHANG D, et al. Vibration isolation design for periodically stiffened shells by the wave finite element method[J]. Journal of Sound and Vibration, 2018, 419(1): 90-102.
[3] 陈兆林,杨智春. 结构高频振动响应预示的能量有限元法[M]. 西安:西北工业大学出版社,2023.
[4] LE BOT A.Foundations of statistical energy analysis in vibroacoustics[M]. Oxford: Oxford University Press, 2015.
[5] LANGLEY R S. On the vibrational conductivity approach to high frequency dynamics for two-dimensional structural components[J]. Journal of Sound and Vibration, 1995, 182(4): 637-657.
[6] PARK D H, HONG S Y, KIL H G. Power flow model of flexural waves in finite orthotropic plates[J]. Journal of Sound and Vibration, 2003, 264(1): 203-224.
[7] LE BOT A. A Vibroacoustic model for high frequency analysis [J]. Journal of Sound and Vibration, 1998, 211(4): 537-554.
[8] LE BOT A. Geometric diffusion of vibrational energy and comparison with the vibrational conductivity approach [J]. Journal of Sound and Vibration, 1998, 212(4): 637-647.
[9] LE BOT A. Comparison of vibrational conductivity and radiative energy transfer methods[J]. Journal of Sound and Vibration, 2005, 283(1): 135-151.
[10] 周红卫. 高频声振耦合能量有限元若干问题研究[D]. 合肥:中国科学技术大学, 2015.
[11] ZHONG Q, CHEN H, LE BOT A. Radiative energy transfer model for finite anisotropic plates[J]. Journal of Sound and Vibration, 2021, 497: 115947.
[12] 王幸,钟强,李翱,等. 功能梯度耦合梁的能量辐射传递模型[J]. 振动与冲击,2022, 41(12): 178-187.
Wang Xing, ZHONG Qiang, Li Ao, et al. A radiative energy transfer model for functionally graded coupled beams[J]. Journal of Vibration and Shock, 2022, 41(12): 178-187.
[13] HUANG J, ZHONG Q, CHEN H. Radiative energy transfer model for high frequency vibration of functionally graded beams in thermal environment[J]. Thin-Walled Structures, 2023, 186: 110714.
[14] 余海宁,陈海波,黄进安. 复合材料曲梁的能量辐射传递模型研究[J]. 振动与冲击, 2023, 42(23): 124-132.
YU Hai-ning, CHEN Hai-bo, HUANG Jin-an. Energy radiation transfer model of composite curved beam[J]. Journal of Vibration and Shock, 2023, 42(23): 124-132.
[15] LANGLEY R S. Wave motion and energy flow in cylindrical shells[J]. Journal of Sound and Vibration, 1994, 169(1): 29-42.
[16] FEIT D, JUNGER M C. High-frequency response of an elastic spherical shell[J]. Journal of Applied Mechanics, 1969, 36(4): 859-864.
[17] FEIT D. High-frequency response of a point excited cylindrical shell[J]. The Journal of the Acoustical Society of America, 1971, 49(5B): 1499-1504.
[18] PIERCE A D, KIL H G. Elastic wave propagation from point excitations on thin-walled cylindrical chells[J]. Journal of Vibration and Acoustics, 1990, 112(3): 399-406.
[19] 解妙霞, 陈花玲, 吴九汇. 圆柱壳高频弯曲振动的能量有限元分析[J]. 西安交通大学学报, 2008(9): 1113-1116.
XIE Miao-xia, CHEN Hua-ling, WU Jiu-hu. Energy finite element analysis to high-frequency bending vibration in cylindrical chell[J]. Journal of Xi′an Jiaotong University, 2008(9): 1113-1116.
[20] KWON H W, HONG S Y, PARK D H, 等. Vibrational energy flow models for out-of-plane waves in finite thin shell[J]. Journal of Mechanical Science and Technology, 2012, 26(3): 689-701.
[21] KWON H W, HONG S Y, SONG J H. Vibrational energy flow analysis of coupled cylindrical thin shell structures[J]. Journal of Mechanical Science and Technology, 2016, 30(9): 4049-4062.
[22] LEISSA A W. Vibration of shells[M]. Washington, D.C: NASA, 1973.
[23] REBINSKY D A, NORRIS A N. Dispersion of flexural waves on shells[J]. Journal of Vibration and Acoustics, 1996, 118(3): 526-529.
[24] XU M B, ZHANG W H. Vibrational power flow input and transmission in a circular cylindrical shell filled with fluid [J]. Journal of Sound and Vibration, 2000, 234(3): 387-403.
[25] 李翱,陈海波,钟强,等. 正交各向异性层合板壳耦合结构的能量传递特性[J]. 振动与冲击, 2022, 41(05): 9-19.
LI Ao, CHEN Hai-bo, ZHONG Qiang, et al. Energy transfer characteristics of orthotropic laminated plate-shell coupled structure[J]. Journal of Vibration and Shock, 2022, 41(05): 9-19.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}