基于NSGA-Ⅱ算法的柔性气缸弹射影响参数优化研究

王卓越, 杨宝生, 姜毅, 杨哩娜, 王汉平

振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 99-108.

PDF(2893 KB)
PDF(2893 KB)
振动与冲击 ›› 2025, Vol. 44 ›› Issue (9) : 99-108.
振动理论与交叉研究

基于NSGA-Ⅱ算法的柔性气缸弹射影响参数优化研究

  • 王卓越,杨宝生,姜毅*,杨哩娜,王汉平
作者信息 +

Optimization of parameters affecting flexible cylinder ejection based on NSGA-II algorithm

  • WANG Zhuoyue, YANG Baosheng, JIANG Yi*, YANG Lina, WANG Hanping
Author information +
文章历史 +

摘要

柔性气缸弹射作为一种新型弹射方法,具有红外目标隐蔽、能量输出稳定等优点。为解决柔性气缸弹射过载较大、响应时间较长的问题,进一步提高弹射响应速度和弹射稳定性,本文引入了一种代理模型优化方法对柔性气缸弹射过程进行优化,旨在减小弹射过载并提升弹射速度。基于代理模型理论,建立柔性气缸弹射代理模型,对代理模型进行精度分析,在此基础上,深入探究了充气孔直径、开启时间以及开启时长这三个关键参数对弹射动力学响应的具体影响。结合NSGA-Ⅱ(Non-dominated Sorting Genetic Algorithm II)优化算法,对弹射模型的相关参数进行了优化处理。研究结果显示,采用粒子法的有限元模型能够精确模拟柔性气缸的弹射过程;进一步的分析表明,相较于响应面模型Kriging代理模型在替代柔性气缸有限元模型方面展现出了更高的准确性。针对初始设计点,我们提出了通过NSGA-Ⅱ算法优化的均衡设计方案,该方案成功地将弹射速度提升了4.79%,同时将弹射过载降低了21.70%;并针对弹射速度与最大过载的优化过程给出了优化方案。

Abstract

As a new type of ejection method, flexible cylinder ejection has the advantages of infrared target concealment and stable energy output. In order to solve the problems of large overload and long response time of flexible cylinder ejection, and further improve the ejection response speed and ejection stability, this paper introduces an agent model optimization method to optimize the ejection process of flexible cylinder, which aims to reduce the ejection overload and improve the ejection speed. Based on the theory of agent model, an agent model of flexible cylinder ejection is established, and the accuracy of the agent model is analyzed. On this basis, the effects of three key parameters, namely, the diameter of the inflation hole, the opening time, and the opening duration, on the ejection dynamics are investigated in depth. Combined with NSGA-II (Non-dominated Sorting Genetic Algorithm II) optimization algorithm, the relevant parameters of the ejection model were optimized. The results show that the finite element model using the particle method is able to accurately simulate the ejection process of the flexible cylinder; further analysis shows that the Kriging proxy model demonstrates higher accuracy in replacing the finite element model of the flexible cylinder compared to the response surface model. For the initial design point, we propose a balanced design scheme optimized by NSGA-II algorithm, which successfully increases the ejection velocity by 4.79% and reduces the ejection overload by 21.70%; and an optimization scheme is given for the optimization process of the ejection velocity and the maximum overload.

关键词

粒子法 / 柔性气缸弹射 / Kriging代理模型 / NSGA-Ⅱ算法

Key words

CPM / flexible cylinder ejection / Kriging surrogate model / Non-dominated Sorting Genetic Algorithm II

引用本文

导出引用
王卓越, 杨宝生, 姜毅, 杨哩娜, 王汉平. 基于NSGA-Ⅱ算法的柔性气缸弹射影响参数优化研究[J]. 振动与冲击, 2025, 44(9): 99-108
WANG Zhuoyue, YANG Baosheng, JIANG Yi, YANG Lina, WANG Hanping. Optimization of parameters affecting flexible cylinder ejection based on NSGA-II algorithm[J]. Journal of Vibration and Shock, 2025, 44(9): 99-108

参考文献

[1] 赵克转,张高峰. 导弹冷弹射过程建模及动力学仿真研究[J]. 弹箭与制导学报,2012,32(04):45-48.
Zhao K Z,Zhang G F. Modeling and dynamic simulation study on missile cold ejection process[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2012,32(04): 45-48. (in Chinese)
[2] 姚琳,马大为,任杰,魏龙涛,李亚. 无杆式气缸弹射装置内弹道仿真与优化设计[J]. 振动与冲击,2017,36(06):122-127.
Yao L, Ma L, Ren J, et al. Internal ballistics simulation on and improving of rod-less cylinder cold launching device[J]. Journal of Vibration and Shock. 2017,36(06):122-127. (in Chinese)
[3] 谢磊,高钦和,邵亚军. 压缩空气弹射内弹道影响因素作用规律研究[J]. 火力与指挥控制,2019,44(3):116-119.
Xie L, Gao Q H, Shao Y J. Analysis of Factors to Compressed Air Ejection Interior Ballistic Based on FLUENT[J]. Fire Control & Command Control, 2019,44(3):116-119. (in Chinese)
[4] 颜凤,史少岩,姜毅. 燃气蒸汽式弹射内弹道研究[J]. 舰船科学技术, 2017, 39(3):118-122.
Yan F, Shi S Y, Jiang Y. Research on interior ballistic of gas-steam ejection, 2017, 39(3):118-122. (in Chinese)
[5] 贾文昂,赵伟. 分离式气液混合弹射动力系统的研究[J]. 振动与冲击,2017,36(04):93-98.
Jia W Y, Zhao W. A study on the separate ejection system with gas-hydraulic hybrid[J]. Journal of Vibration and Shock, 2017, 36(4):93-98. (in Chinese)
[6] 董健年,吴毅,桂应春等. 电磁弹射装置中线圈受力与电流相位的关系[J]. 高电压技术,2006,32(7):79-80,122.
Dong J N, Wu Y, Gui Y C, et al. Relationship Between Electromagnetic Force and Phases of Current in Electromagnetic Launch[J]. High Voltage Engineering, 2006, 32(7):79-80. (in Chinese)
[7] 柳忠彬,肖守讷,王欢. 非爆破柔性气缸弹射器研究[J]. 兵工学报,2017,38(2):389-395.
Liu Z B, Xiao S N, Wang H. Research on Non-blasting Flexible Cylinder Launcher[J]. Binggong Xuebao, 2017, 38(2):389-395. (in Chinese)
[8] 赵振,姜毅,刘相新等. 基于粒子法的柔性气缸导弹弹射数值仿真[J]. 兵工学报,2022,43(3):533-541. 
Zhao Z, Jiang Y,Liu X X, et al. Numerical simulation of ejecting a missile from missile ejection system with flexible cylinder based on corpuscular method[J]. Acta Armamentaria, 2022,43(3):533-541. (in Chinese)
[9] 杨宝生,杨哩娜,姜毅. 基于粒子法的可变边界柔性气缸弹射研究[J]. 振动与冲击,2023,42(10):43-50.
Yang B S, Yang L N, Jiang Y. Research on Flexible Cylinder Ejection with Variable Boundary Based on Corpuscular Method[J]. Journal of Vibration and Shock, 2023,42(10):43-50. (in Chinese)
[10] 杨宝生,姜毅,苏政宇等. 通用化柔性气缸弹射研究[J]. 弹箭与制导学报,2023,43(1):70-76.
Yang B S, Jiang Y, Su Z Y, et al. Research on universal flexible cylinder ejection[J]. Journal of Projectiles, Rocket, Missiles, and Guidance, 2023,43(1):70-76. (in Chinese)
[11] 刘海林,肖俊荣. 基于分解和超平面拟合的进化超多目标优化降维算法[J]. 电子与信息学报,2022,44(09):3289-3298. Liu H L, Xiao J R. Objective Reduction Algorithm Based on Decomposition and Hyperplane Approximation for Evolutionary Many-Objective Optimization[J]. Journal of Electronics & Information Technology, 2022,44(09):3289-3298. (in Chinese)
[12] 王威,胡鹏程,张攀,刘均,程远胜. 基于代理模型技术的玻璃纤维复合装甲抗弹性能多目标优化设计[J]. 振动与冲击,2022,41(18):16-24.
Wang W,Hu P C,Zhang P, et al. Multi-objective optimization of the ballistic resistance of a glass fiber reinforced composite armor based on a surrogate model [J]. Journal of Vibration and Shock, 2022,41(18):16-24. (in Chinese)
[13] Li Y X, Zhang Y, Hu W. Adaptive multi-objective particle swarm optimization based on virtual Pareto front[J]. Information Sciences,2023,625.
[14] Han X H, Dong J P. Applications of fractional gradient descent method with adaptive momentum in BP neural networks[J]. Applied Mathematics and Computation, 2023,448.
[15] Masoud Babaei, Indranil Pan. Performance comparison of several response surface surrogate models and ensemble methods for water injection optimization under uncertainty[J]. Computers and Geosciences,2016,91.
[16] Li J X, Chen J Q, Wei J H, Yang X H. A Kriging-based important region sampling method for efficient reliability analysis[J]. Quality Technology & Quantitative Management,2023,20(3).
[17] Nassef Ahmad Salah Edeen. Hermite radial basis-differential quadrature solution for nonlinear buckling problem of non-uniform continuity boundaries of delaminated cylindrical shells[J]. Thin-Walled Structures,2023,185.
[18] Yazdinejad Abbas, Dehghantanha Ali, Parizi Reza M., Epiphaniou Gregory. An optimized fuzzy deep learning model for data classification based on NSGA-II[J]. Neurocomputing, 2023,522.
[19] WANG J T. An analytical model for an airbag with a hybrid inflator[J]. ASME Crash worthiness Occupant Prot Transportation Syst, 1995,30:467-497.
[20] WANG J T, NEFSKE D J. A new CAL3D airbag inflation model[J]. SAE Transactions, 1988,97:697-706.
[21] Lian W Y, Lars Olovesson , Dilip Bhalsod. Development of CFD Capability for Airbag Out-of-Position[C].ASME, 2004, Charlotte, North Carolina.
[22] OLOVSSON L. Corpuscular method for OOP Simulations, difficulty dealing with small vent holes[C]//The 6th European LS-DYNA Users Conference. Gothenburg: ERAB, 2007:1-4.
[23] MROZ K, PIPKORN B. Mathematical modelling of the early phase deployment of a passenger airbag–folding using origami theory and inflation using LS-DYNA particle method[C]//The 6th European LS-DYNA Users Conference. Gothenburg: ERAB, 2007:71-86.
[24] FREISINGER M, HOFFMANN J, STAHLSCHMIDT S. Investigation of the early inflation characteristics of a complex folded knee airbag with the new corpuscular method in LS-DYNA[C]//The 6th European LS-DYNA Users Conference. Gothenburg: ERAB, 2007:7-20.
[25] Li Y-R, Zhu T, Tang Z, et al. Inversion prediction of back propagation neural network in collision analysis of anti-climbing device. Advances in Mechanical Engineering. 2020;12(5).

PDF(2893 KB)

Accesses

Citation

Detail

段落导航
相关文章

/