旋转圆柱气动特性的雷诺数效应研究

马文勇1,2,3,刘剑寒1,张晓斌1,李玉学1

振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 46-52.

PDF(2120 KB)
PDF(2120 KB)
振动与冲击 ›› 2022, Vol. 41 ›› Issue (7) : 46-52.
论文

旋转圆柱气动特性的雷诺数效应研究

  • 马文勇1,2,3,刘剑寒1,张晓斌1,李玉学1
作者信息 +

Reynolds number effect on aerodynamic characteristics of a rotating circular cylinder

  • MA Wenyong1,2,3, LIU Jianhan1, ZHANG Xiaobin1, LI Yuxue1
Author information +
文章历史 +

摘要

流体流过旋转圆柱形成的不对称流场会在圆柱上产生侧向流致力(升力),这种流致力在航海和风能利用方面有很广的应用前景,旋转圆柱气动力特性的研究对这些应用有重要的意义。通过测量旋转圆柱体在不同转速和风速下的气动力和尾流场,本文讨论了不同雷诺数范围旋转圆柱的气动特性。结果表明雷诺数是影响旋转圆柱气动力的重要因素:亚临界区旋转圆柱的侧向力主要体现为马格努斯效应,升力指向切向速度与风速相同一侧,随着转速比的增大而增大;在临界区,圆柱的转动会诱发流体在切向速度与风速相反一侧形成再附现象,形成指向该侧的升力,随着转速的提高,升力不会发生明显变化。此外,雷诺数效应会受到转速的影响:随着转速提高,发生阻力损失的雷诺数会变小,出现再附现象的雷诺数范围变大。

Abstract

The asymmetric flow field around a rotating cylinder produce a lateral force (lift) on the cylinder, which can be widely applied in navigation and wind energy utilization. By measuring the aerodynamic force of a rotating cylinder at different rotating speeds and wind speeds, the aerodynamic characteristics on the rotating cylinder and the wake in different Reynolds number ranges are discussed in the present study. The results show that the Reynolds number significantly influences the aerodynamic force on the rotating cylinder. The mechanism of the formation of the lift on the rotating cylinder in the subcritical Reynolds number range is attributed to the Magnus effect, in which the lift points to the side of the tangential speed of the rotating cylinder as same as the wind speed. The lift increases with the increase of the speed ratio. In the critical Reynolds number range, the rotation of the cylinder forms a reattachment on the side which the tangential speed is opposite to the wind speed. The reattachment induces a separation bubble and creates lift pointing to this side. Moreover, the Reynolds number effect is influenced by the rotating speed. As the rotating speed increases, the Reynolds number at the drag crisis decreases. The flow reattaches at larger Reynolds number range at higher rotating speed.

关键词

旋转圆柱 / 风洞试验 / 气动特性 / 转速比 / 雷诺数

Key words

rotating circular cylinder / wind tunnel test / aerodynamic characteristics / rotation ratio / Reynolds number

引用本文

导出引用
马文勇1,2,3,刘剑寒1,张晓斌1,李玉学1. 旋转圆柱气动特性的雷诺数效应研究[J]. 振动与冲击, 2022, 41(7): 46-52
MA Wenyong1,2,3, LIU Jianhan1, ZHANG Xiaobin1, LI Yuxue1. Reynolds number effect on aerodynamic characteristics of a rotating circular cylinder[J]. Journal of Vibration and Shock, 2022, 41(7): 46-52

参考文献

[1] Hastings R B. THE FLETTNER "ROTOR SHIP."[J]. Journal of the American Society for Naval Engineers, 2010, 37(1):156-159.
[2] Fiesser L. UniKat-Flensburg. Flettner-Rotor als alternativer Schiffsantrieb [J]. Physik in Unserer Zt, 2010, 40(5):256-259.
[3] Crimi P. Performance assessment of a flettner wind turbine [J]. Journal of Energy, 1980, 4(6):281−283.
[4] Zdravkovich M M. Flow around circular cylinder, Vol. 1, Fundamentals [M]. New York: Oxford University Press, 1997: 19−198.
[5] Magnus G. On the deflection of a projectile [J]. Poggendorffs Annalen der Physik und Chemie, 1853, 88(1): 804−810.
[6] Pezzotti S , Mora V N , A. Sanz Andrés, et al. Experimental study of the Magnus effect in cylindrical bodies with 4, 6, 8 and 10 sides [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 197:104065.
[7] Swanson W M. The magnus effect: A summary of investigations to date [J]. Journal of Basic Engineering, 1961, 83(3): 461−470.
[8] Takayama S, Aoki K. Flow characteristics around a rotating grooved circular cylinder with grooved of different depths [J]. Journal of Visualization, 2005, 8(4): 295−303.
[9] Badalamenti C. On the application of rotating cylinders to micro air vehicles [D]. London: City University, 2010.
[10] Bordogna G, Muggiasca S, Giappino S, et al. Experiments on a flettner rotor at critical and supercritical Reynolds numbers [J]. Journal of Wind Engineering & Industrial Aerodynamics, 2019, 188: 19−29.
[11] Yazdi M J E, Rad A S, Khoshnevis A B. Features of the flow over a rotating circular cylinder at different spin ratios and Reynolds numbers: Experimental and numerical study [J]. European Physical Journal Plus, 2019, 134(5): 189.
[12] Krahn E. Negative magnus force [J]. Journal of the Aeronautical Sciences, 1956, 23: 377−378.
[13] Zhiwei Zheng, Juanmian Lei, Xiaosheng Wu. Numerical Simulation of the Negative Magnus Effect of a Two-Dimensional Spinning Circular Cylinder [J]. Flow, Turbulence and Combustion,2017,98(1): 109-130.
[14] Cooper K R, Mercker E, Wiedemann J. Improved blockage correction for bluff bodies in closed and open wind tunnels[C]//Procceedings of the10th International Conference on Wind Engineering. Copenhagen: A A Balkema Publishers, 1999: 1627-1634
[15] Beitel A, Heng H, Sumner D. The effect of aspect ratio on the aerodynamic forces and bending moment for a surface-mounted finite-height cylinder [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 186: 204-213
[16] Ma W , Liu Q , Macdonald J H G , et al. The effect of surface roughness on aerodynamic forces and vibrations for a circular cylinder in the critical Reynolds number range [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 187: 61-72.
[17] NIKITAS N, MACDONALD J H G. Aerodynamic forcing characteristics of dry cable galloping at critical Reynolds numbers [J]. European Journal of Mechanics Fluids, 2015, 49, 243-249.
[18] 刘庆宽, 张峰, 马文勇, 等. 斜拉索雷诺数效应与风致振动的试验研究. 振动与冲击, 2011, 30(12):114-119.
Liu qingkuan, Zhang Feng, Ma Wenyong, Wang Yi. Experimental study on Reynolds number effect and wind induced vibration of stay cables [J]. Journal of Vibration and Shock, 2011, 30 (12): 114-119.
[19] 沈国辉, 姚剑锋, 郭勇, 等.直径30 cm圆柱的气动力参数和绕流特性研究. 振动与冲击, 2020, 39(06): 22-28.
Shen Guohui, Yao Jianfeng, Guo Yong, et al. Aerodynamic parameters and flow characteristics of a 30 cm diameter cylinder. Journal of Vibration and Shock, 2020,39 (06): 22-28.
[20] ESDU 80025. Mean forces, pressures and flow field velocities for circular cylindrical structures: Single cylinder with two-dimensional flow [R]. London, UK: Engineering Sciences Data Unit, 1980.
[21] Bordogna G, Muggiasca S, Giappino S, et al. Windtunnel experiments on a large-scale flettner rotor: INVENTO 2018 [C]// Proceedings of the XV Conference of the Italian Association for Wind Engineering. Naples: Ricciardelli F, Avossa A M, 2019: 110−123.
[22] Jan O. Pralits, Flavio Giannetti, Luca Brandt. Three-dimensional instability of the flow around a rotating circular cylinder [J]. Journal of Fluid Mechanics, 2013,730: 5-18.
[23] Wei Chen, Chang-Kyu Rheem. Experimental investigation of rotating cylinders in flow [J]. Journal of Marine Science and Technology, 2019,24(1): 111-122.
[24] 陈威霖, 及春宁, 许栋. 不同控制角下附加圆柱对圆柱涡激振动影响. 力学学报, 2019,51(02): 432-440.
Chen Weilin, Ji Chunning, Xu Dong. Effects of the added cylinders with different control angles on the vortex-induced vibrations of a circular cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(02): 432-440.
[25] 杜晓庆, 邱涛, 赵燕. 低雷诺数串列双方柱流致振动质量比效应的数值研究. 力学学报, 2019, 51(06): 1740-1751.
Du Xiaoqing, Qiu Tao, Zhao Yan. Numerical investigation of mass ratio effect on flow-induced vibration of two tandem square cylinders at low Reynolds number [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(06): 1740-1751.
[26] 刘俊, 高福平. 近壁面柱体涡激振动的迟滞效应. 力学学报, 2019, 51(06): 1630-1640.
Liu Jun, Gao Fuping. Hysteresis in vortex-induced vibrations of a near-wall cylinder [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(06): 1630-1640.
[27] Wei Chen, Chang-Kyu Rheem, Yongshui Lin, et al. Experimental investigation of the whirl and generated forces of rotating cylinders in still water and in flow [J]. International Journal of Naval Architecture and Ocean Engineering, 2020,12: 531-540.
[28] Wei Wang, Yuwei Wang, Dagang Zhao, et al. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder [J]. Journal of Marine Science and Application,2020,19(8): 388-397.
[29] 李聪洲, 张新曙, 胡晓峰, 等. 高雷诺数下多柱绕流特性研究. 力学学报, 2018, 50(02): 233-243.
Li Congzhou, Zhang Xinshu, Hu Xiaofeng, et al. The study of flow past multiple cylinders at high Reynolds numbers [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(02): 233-243.
[30] Lele A , Rao K V S . Net power generated by flettner rotor for different values of wind speed and ship speed [C]// 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT). IEEE, 2017.
[31] Traut M , Gilbert P , Walsh C , et al. Propulsive power contribution of a kite and a Flettner rotor on selected shipping routes [J]. Applied Energy, 2014, 113: 362-372.
[32] Copuroglu, Hasan, Islam, et al. Analysis of Flettner Rotor ships in beam waves [J]. Ocean Engineering, 2018, 150: 352-362.

PDF(2120 KB)

1112

Accesses

0

Citation

Detail

段落导航
相关文章

/