针对现有曳引机减振常采用的高分子减振垫因环境因素而引发性能大幅退化问题,本论文以电梯曳引机减振器的工程应用需求为导向,确定减振器所需阻尼元件的刚度后,采用真空渗流技术将硅橡胶填充入金属橡胶孔隙并形成包覆,研制出一款耐环境影响的高性能金属橡胶/硅橡胶连续互穿相复合减振材料(MR-SRC)。然后基于实际结构建立电梯曳引机的有限元数值模型。对加装MR-SRC减振器前后的电梯曳引机进行了模态分析,确定了整体结构的固有频率和振型。对MR-SRC减振器进行冲击响应分析,对比不同MR-SRC材料和冲击载荷对响应的影响,校核减振器的强度。接着,基于MR-SRC的近似等效,对减振器系统的冲击响应进行了理论计算,得出金属橡胶密度为1.8g/cm3的MR-SRC减振器对减振效果最佳。最后将所制备的MR-SRC减振器安装于实际电梯曳引机,按照电梯减振国标要求,测试电梯在运行过程中的加速度和速度变化,计算并校核电梯运行的相关特性参数。本论文提出的减振器为电梯安全可靠运行提供了一种新途径。
Abstract
In response to the problem of significant degradation of the performance of existing polymer damping mats used for traction machine damping due to environmental factors, this thesis is oriented to the engineering application requirements of elevator traction machine dampers, and after determining the stiffness of the damping elements required for the dampers, a high performance metal rubber/silicone rubber continuous interpenetrating phase damping material with environmental resistance is developed by filling the pores of metal rubber and forming an envelope using vacuum infiltration technology. composite vibration damping material (MR-SRC) that is resistant to environmental effects. Then the finite element numerical model of the elevator traction machine was established based on the actual structure. The modal analysis of the elevator traction machine before and after the addition of MR-SRC damper was carried out to determine the inherent frequency and vibration pattern of the overall structure. The impact response of the MR-SRC damper was analyzed to compare the effects of different MR-SRC materials and impact loads on the response, and the strength of the damper was calibrated. Then, based on the approximate equivalence of MR-SRC, the impact response of the damper system was theoretically calculated, and it was concluded that the MR-SRC damper with a metal-rubber density of 1.8 g/cm3 has the best effect on damping. Finally, the prepared MR-SRC shock absorber is installed in the actual elevator traction machine, and the acceleration and velocity changes of the elevator during operation are tested according to the requirements of the elevator vibration damping national standard, and the relevant characteristic parameters of the elevator operation are calculated and checked. The dampers proposed in this thesis provide a new way for safe and reliable operation of elevators.
关键词
电梯曳引机 /
金属橡胶-硅胶线复合材料减振器 /
模态分析 /
冲击响应 /
数值模拟
{{custom_keyword}} /
Key words
Elevator traction machine /
Metal rubber silica gel wire composite shock absorber /
Modal analysis /
Shock response /
Numerical simulation
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙舒然. 曳引式电梯垂直振动仿真及振动故障分析[J]. 中国特种设备安全. 2022, 38(02): 21-25.
Shuran Sun. Vertical vibration simulation and vibration fault analysis of traction elevator[J]. China Special Equipment Safety. 2022, 38(02): 21-25.
[2] 常娜. 电梯提升系统固有特性与动力学响应分析[D]. 昆明理工大学, 2017.
Na C. Analysis of inherent characteristics and dynamic response of elevator hoisting system[D]. Kunming University of Science and Technology, 2017.
[3] Arakawa A, Miyata K. A variable-structure control method for the suppression of elevator-cage vibration[C]// 28th Annual Conference of the IEEE Industrial Electronics Society. Sevilla, Spain: IEEE,2002.
[4] Herrera I, Su H, Kaczmarczyk S. Investigation into the Damping and Stiffness Characteristics of an Elevator Car System[J]. Applied Mechanics and Materials. 2010, 972(24-25).
[5] 花建新. 曳引式乘客电梯的振动仿真与测试[D]. 苏州大学, 2014.
Jianxin H. Vibration Simulation and Test of Traction Passenger Elevator [D]. Suzhou University, 2014.
[6] S Rieβ , Kaal W, Herath K. Frequency-Adaptable Tuned Mass Damper Using Metal Cushions[J]. 2021.
[7] 张大义,夏颖,张启成,等. 金属橡胶力学性能研究进展与展望[J]. 航空动力学报. 2018, 33(06): 1432-1445.
Dayi Z, Ying X, Qicheng Z, et al. Research progress and prospect of mechanical properties of metal rubber [J]. Journal of Aerodynamics. 2018, 33(06): 1432-1445.
[8] 王少纯,邓宗全,高海波,等. 月球着陆器用金属橡胶高低温力学性能试验研究[J]. 航空材料学报. 2004(02): 27-31.
Shaochun W, Zongquan D, Haibo G, et al. Experimental study on mechanical properties of metal rubber for lunar lander at high and low temperatures [J]. Journal of Aeronautical Materials. 2004(02): 27-31.
[9] 李回滨,袁志华,韩铁,等. 转管炮弹簧-金属橡胶缓冲器后坐特性研究[J]. 火炮发射与控制学报. 2017, 38(02): 6-10.
Huibin L, Zhihua Y, Tie H, et al. Study on recoil characteristics of spring metal rubber buffer of rotary cannon [J]. Journal of Artillery Launch and Control. 2017, 38(02): 6-10.
[10] Zhiying R, Liangliang S, Hongbai B, et al. Constitutive model of disordered grid interpenetrating structure of flexible microporous metal rubber[J]. Mechanical Systems and Signal Processing. 2021, 154.
[11] Liangliang S, Zhiying R, Jian X, et al. Dry friction damping mechanism of flexible microporous metal rubber based on cell group energy dissipation mechanism[J]. Friction. 2022, 11(2).
[12] Ren Z, Shen L, Huang Z, et al. Study on Multi-Point Random Contact Characteristics of Metal Rubber Spiral Mesh Structure.[J]. IEEE Access. 2019, 7.
[13] Ren Z, Shen L, Bai H, et al. Study on the Mechanical Properties of Metal Rubber with Complex Contact Friction of Spiral Coils based on Virtual Manufacturing Technology[J]. Advanced Engineering Materials. 2020, 22(8).
[14] 肖坤,白鸿柏,薛新,等. 金属橡胶包覆管路阻尼结构减振性能研究[J]. 振动与冲击. 2019, 38(23): 239-245.
Kun X, Hongbai B, Xin X, et al. Study on the vibration damping performance of metal-rubber clad pipeline damping structure[J]. Vibration and Shock. 2019, 38(23): 239-245.
[15] 李玉龙,白鸿柏,何忠波,等. 金属橡胶消极减振系统复杂响应特性研究[J]. 振动与冲击. 2016, 35(04): 87-92.
Yulong L, Hongbai B, Zhongbo H, et al. Study of complex response characteristics of metal-rubber negative vibration damping systems[J]. Vibration and Shock. 2016, 35(04): 87-92.
[16] 邹广平,刘泽,程贺章,等. 预紧量与振动量级对金属橡胶减振器振动特性影响研究[J]. 振动与冲击. 2015, 34(22): 173-177.
Guangping Z, Ze L, Hezhang C, et al. Study on the effect of preload and vibration magnitude on the vibration characteristics of metal-rubber dampers[J]. Vibration and Shock. 2015, 34(22): 173-177.
[17] 祝维文,刘星星,任志英,等. 非成型向金属橡胶减振器的减振性能[J]. 福州大学学报(自然科学版). 2020, 48(06): 747-754.
Weiwen Z, Xingxing L,Zhiying R, et al. Vibration damping performance of non-formed oriented metal-rubber vibration damper [J]. Journal of Fuzhou University (Natural Science Edition). 2020, 48(06): 747-754.
[18] 王平,张国玉,高玉军,等. 金属橡胶减振器在机载光电吊舱复合减振系统中的应用[J]. 振动与冲击. 2014, 33(05): 193-199.
Ping W, Guoyu Z,Yunjun G, et al. Application of metal-rubber dampers in airborne optoelectronic pod composite vibration damping system[J]. Vibration and Shock. 2014, 33(05): 193-199.
[19] Zhiying R, Jinming L, Honglin Q, et al. Research on mechanical properties of metal entangled structure‐silicone rubber composite vibration damping materials[J]. Polymer Composites. 2023.
[20] 邵晓宙. 金属橡胶超弹性本构模型研究及其有限元二次开发[D]. 中北大学, 2021.
Xiaozhou S. Research on hyperelastic constitutive model of metal rubber and its secondary development of finite element method [D]. Central North University, 2021.
[21] Marlow R S. A general first-invariant hyperelastic constitutive model[J]. Constitutive Models for Rubber. 2003: 157-160.
[22] 鲍继轩. 金属橡胶减振器抗冲击力学性能研究[D]. 中北大学, 2022.
Bao Jixuan. Study on impact mechanical properties of metal rubber shock absorber[D]. North University of China, 2022.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}