桥梁抗风型TMD对车-桥耦合振动系统减振性能研究

刘修平1,王涛1,杨克焕2,冯宇1,韩万水1

振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 121-130.

PDF(3685 KB)
PDF(3685 KB)
振动与冲击 ›› 2024, Vol. 43 ›› Issue (5) : 121-130.
论文

桥梁抗风型TMD对车-桥耦合振动系统减振性能研究

  • 刘修平1,王涛1,杨克焕2,冯宇1,韩万水1
作者信息 +

Vibration reduction effect of bridge anti-wind type TMD on vehicle-bridge coupled vibration system

  • LIU Xiuping1,WANG Tao1,YANG Kehuan2,FENG Yu1,HAN Wanshui1
Author information +
文章历史 +

摘要

为研究桥梁抗风型调谐质量阻尼器(TMD)对车辆荷载引起结构振动的减振效果,并揭示车载作用下的TMD激振机理,提出了基于模态动能演化的多自由度结构TMD控制方法,确定了安装TMD的最优设计参数和布设位置;考虑桥梁有限元模型动力求解的通用性,基于桥梁三维动力分析系统BDANS软件建立了车-桥-TMD动力耦合分析系统;以经典单自由度移动弹簧质量过简支梁模型为研究对象,分析了车-桥-TMD系统振动特性,结合某深水区非通航桥梁抗风型TMD工程实例分析了TMD对车致振动的减振效果和机理。研究结果表明:TMD行程幅值与减振效果呈现正相关特点,即行程幅值越大对车-桥动力效应引起的振动减振效果越好;安装TMD可以显著提高结构的等效阻尼比,满足等效阻尼比>1%的工程需求,提高桥梁结构振动的稳定性;TMD在一定条件下可以减小车辆通过时引发桥梁竖向位移冲击效应,最大可减少3%左右;TMD对车-桥2个子系统的加速度瞬态峰值均起到了一定的抑制效果,尤其对桥梁结构竖向振动加速度作用效果明显,安装TMD后的桥梁跨中竖向振动加速度RMS值减少约20%;对大跨钢箱桥梁而言,相比较小的车辆荷载冲击效应,一阶竖弯呈邻跨反对称特性的桥梁结构在车辆通行过程中更容易激起TMD,使桥梁结构获得更佳的减振效果。

Abstract

To study the vibration reduction effect of Tuned Mass Damper (TMD) on bridge structures subjected to vehicle loading and reveal the excitation mechanism of TMD under moving vehicles, a multi-degree-of-freedom structural TMDs control method based on modal kinetic energy evolution was proposed. Optimal design parameters and installation locations for TMDs were determined. Considering the generality of dynamic solution for bridge finite element models, a vehicle-bridge-TMDs dynamic coupling analysis system was established using the BDANS software, a three-dimensional bridge dynamics analysis tool. Taking a classic case of a simply supported beam with a single-degree-of-freedom moving mass-spring system as the research object, the vibration characteristics of the vehicle-bridge-TMDs system were analyzed. An engineering example of a non-navigable bridge in a deepwater area with wind-resistant TMDs was studied to analyze the damping effects and mechanisms of TMDs on vehicle-induced vibrations. The research findings indicate the following: The amplitude of TMDs travel is positively correlated with its damping effect, indicating that larger travel amplitudes result in better attenuation of vehicle-bridge dynamic effects-induced vibrations. Installing TMDs can significantly increase the equivalent damping ratio of the structure, meeting the engineering requirement of an equivalent damping ratio greater than 1% and improving the stability of bridge structural vibrations. In certain conditions, TMDs can reduce the vertical displacement impact caused by moving vehicles, with a maximum reduction of approximately 3%. TMDs have a suppressing effect on the peak transient accelerations of both the vehicle and bridge subsystems, especially on the vertical acceleration of the bridge structure. The root mean square (RMS) value of the vertical acceleration at the midspan of the bridge decreases by approximately 20% after installing TMDs. For long-span steel box girder bridges, compared to smaller impact effect of moving vehicles, structures with first-order vertical bending mode exhibiting adjacent span anti-symmetrical characteristics are more easily excited by TMDs, resulting in better vibration attenuation of the bridge structure while vehicles move through.

关键词

桥梁工程 / 抗风型TMD / 车-桥耦合 / 减振控制

Key words

bridge engineering / wind resistant TMD / coupled vibration of vehicle and bridge / vibration control

引用本文

导出引用
刘修平1,王涛1,杨克焕2,冯宇1,韩万水1. 桥梁抗风型TMD对车-桥耦合振动系统减振性能研究[J]. 振动与冲击, 2024, 43(5): 121-130
LIU Xiuping1,WANG Tao1,YANG Kehuan2,FENG Yu1,HAN Wanshui1. Vibration reduction effect of bridge anti-wind type TMD on vehicle-bridge coupled vibration system[J]. Journal of Vibration and Shock, 2024, 43(5): 121-130

参考文献

[1] 朱杰, 王亚超, 霍明亮, 等. 可调TMD阻尼器在大跨度钢结构中的震动控制应用[J]. 土木工程学报, 2010(s1):317-322. ZHU Jie, WANG Yachao, HUO Mingliang, et al. The vibration control applications of adjustable TMD damper in large span steel structure[J]. China Civil Engineering Journal, 2010(s1):317-322. [2] Venanzi, Ilaria. Robust optimal design of tuned mass dampers for tall buildings with uncertain parameters[J]. Structural & Multidisciplinary Optimization, 2015, 51(1):1-12. [3] LAI, Yong-An, Chung, et al. Semi-active phase control of tuned mass dampers for translational and torsional vibration mitigation of structures[J]. Structural Control and Health Monitoring, 2018, 25(9):e2191.1. [4] Lin CC, Wang JF, Lien CH, et al. Optimum design and experimental study of multiple tuned mass dampers with limited stroke[J]. Earthquake Engineering & Structural Dynamics, 2010, 39(14):1631–1651. [5] Morga, Mariantonietta, Marano, et al. Optimization criteria of TMD to reduce vibrations generated by the wind in a slender structure.[J]. Journal of Vibration & Control, 2014, 20(1): 2404-2416. [6] 王志诚,许春荣,吴宏波.崇启大桥主桥钢箱梁TMD系统设计参数计算研究[J].土木工程学报,2015,48(05):76-82. WANG Zhicheng, XU Chunrong, WU Hongbo. Study on design parameters of TMD system for steel box girder of Chongqi Bridge[J]. China Civil Engineering Journal, 2015,48(05):76-82. [7] 文永奎,卢文良.分布式TMD对斜拉桥抖振减振的参数优化及分析[J].土木工程学报,2014,47(06):88-96. WEN Yongkui, LU Wenliang. Parametric optimization and analysis of distributed TMD for buffeting response control of cable-stayed bridges[J]. China Civil Engineering Journal, 2014,47(06):88-96. [8] 向越,谭平,贺辉等.双阻尼模型调谐质量阻尼器在随机激励下的减震性能研究[J/OL].工程力学:1-14. XIANG Yue, TAN Ping, HE Hui, et al. Performance study of dual damping tuned mass damper subjected to stochastic excitation[J/OL]. Engineering Mechanics:1-14. [9] Chen S R , Wu J . Performance enhancement of bridge infrastructure systems: Long-span bridge, moving trucks and wind with tuned mass dampers[J]. Engineering Structures, 2008, 30(11):3316-3324. [10] 张新亚,雷晓燕,罗锟.列车荷载作用下轨道箱梁结构TMD减振效果研究[J].铁道标准设计,2022,66(10):98-104. ZHANG Xinya, LEI Xiaoyan, LUO Kun. Research on TMD vibration reduction effect of track box girder structure under train load[J]. Raiway Standard Design, 2022,66(10):98-104. [11] 刘广波,周星德,石星星,等.车-桥耦合系统MTMD振动控制参数研究[J].郑州大学学报(工学版),2012,33(06):64-67. LIU Guangbo, ZHOU Xingde, SHI Xingxing, et al. Research on MTMD vibration control parameters in vehicle-bridge coupled system[J]. Journal of Zhengzhou University ( Engineering Science), 2012,33(06):64-67. [12] 王浩, 刘海红, 陶天友, 等. TMD对列车作用下大跨钢桁架桥的振动控制研究[J]. 振动工程学报, 2014, 27(3). WANG Hao, LIU Haihong, TAO Tianyou, et al. Vibration control of long span steel truss bridge subjected to train loadings using TMD[J]. Journal of vibration engineering, 2014, 27(3). [13] 李喜梅,王新,母渤海,等.车辆荷载作用下双工字钢-混组合连续梁桥振动控制研究[J].中国公路学报,2022,35(07):173-183. LI Ximei, WANG XIN, MU HAIbo, et al. Research on vibration control of twin-I steel concrete composite continuous girder bridge under vehicle load[J]. China Journal of Highway and Transport, 2022,35(07):173-183. [14] Rana R , Soong T T. Parametric study and simplified design of tuned mass dampers[J]. Engineering Structures,Elsevier Science, 20 (3), 193-204. [15] Miguel L F F, Lopez R H, Torii A J , et al. Robust design optimization of TMDs in vehicle–bridge coupled vibration problems[J]. Engineering Structures, 2016, 126:703-711. [16] 韩万水,刘焕举,包大海,等.大跨钢桁梁悬索桥风-车-桥分析系统建立与可视化实现[J].土木工程学报,2018,51(03):99-108. HAN Wanshui, LIU Huanju, BAO Dahai, et al. Establishment and visualization of wind- vehicle bridge analysis system for the large span steel truss suspension bridge[J]. China Civil Engineering Journal, 2018,51(03):99-108. [17] 韩万水,武隽,马麟,等.基于微观交通流模型的风-车-桥系统高真实度模拟[J].中国公路学报,2015,28(11):37-45. HAN Wanshui, WU Jun, MA Lin, et al. High- fidelity simulation of wind-vehicle-bridge system based on microscopic traffic flow model[J]. China Journal of Highway and Transport, 2015,28(11):37-45. [18] 赵越,黄平明,刘修平等.基于等参映射与改进折半法的公路车桥耦合分析系统[J].湖南大学学报(自然科学版),2020,47(11):29-37. ZHAO Yue, HUANG Pingming, LIU Xiuping, et al. Highway vehicle-bridge interaction analysis system based on isoparametric mapping and improved binary search[J]. Journal of Hunan University(Natural Sciences) ,2020,47(11):29-37. [19] 戴军. 港珠澳大桥深水区非通航孔桥TMD风致振动控制[D].南京:东南大学,2020. DAI Jun. Tuned mass damper control of vortex-induced vibration in the Hong Kong-Zhuhai-Macao Bridge deep-water non-navigable bridge[D]. Nanjing: Southeast University, 2020. [20] 廖海黎,马存明,李明水,等.港珠澳大桥的结构抗风性能[J].清华大学学报(自然科学版),2020,60(01):41-47. LIAO Haili, MA Cunming, LI Mingyong, et,al. Wind resistance of the Hong Kong Zhuhai-Macao Bridge[J]. Journal of Tsinghua University(Science and Technology), 2020,60(01):41-47. [21] 隔而固(青岛)振动控制有限公司. 港珠澳大桥CB01标段TMD阻尼器主要部件强度计算报告[R].青岛:隔而固(青岛)振动控制有限公司, 2013. GERB (Qingdao) Vibration Control Co. Ltd. Strength calculation report of main components of TMD damper for CB01 section of Hong Kong Zhuhai Macao Bridge[R].Qingdao: GERB (Qingdao) Vibration Control Co. Ltd.,2013.

PDF(3685 KB)

333

Accesses

0

Citation

Detail

段落导航
相关文章

/