以某公路桥梁为工程背景,设计并制作了两个足尺金属橡胶桥梁支座试件,开展了200万次的竖向疲劳试验,探讨了疲劳前后支座力学性能的变化规律。在疲劳试验过程中每隔20万次进行了一次压缩试验,得到了一组支座竖向压缩滞回曲线。疲劳试验前后分别进行了支座压剪试验,得到了支座水平剪切滞回曲线。引入疲劳损伤因子对金属橡胶桥梁支座的疲劳损伤进行了定量表征。结果表明:金属橡胶桥梁支座疲劳损伤主要表现为内部金属丝之间的磨损、局部断丝、掉丝。疲劳损伤会显著降低支座一侧的水平承载力、屈服后刚度和等效剪切刚度,且使支座的水平剪切滞回曲线变得明显不对称,但会增大支座的整体耗能能力。支座竖向等效刚度及等效阻尼比随着疲劳加载次数先增大后减小然后再趋于稳定。200万次疲劳循环后的剪切等效刚度、竖向等效刚度及竖向等效阻尼比损伤因子均小于0.3,支座具有良好的疲劳性能。
Abstract
With a highway bridge as the engineering background, two full-scale metal-rubber bridge bearing specimens were designed and fabricated, and 2 million times of vertical fatigue tests were carried out to explore the change of mechanical properties of the bearings before and after fatigue. During the fatigue test, a compression test was conducted every 200,000 cycles, and a set of vertical compression hysteresis curves of the bearings were obtained. The horizontal shear hysteresis curves were obtained from the bearing compression shear test before and after the fatigue test. The fatigue damage factor was introduced to quantitatively characterize the fatigue damage of the metal-rubber bridge bearings. The results showed that the fatigue damage of the metal-rubber bridge bearing was mainly manifested by the wear between the internal metal wires, local broken wires and lost wires. The fatigue damage will significantly reduce the horizontal bearing capacity, post-yield stiffness and equivalent shear stiffness of one side of the bearing, and make the horizontal shear hysteresis curve of the bearing become obviously asymmetric, but will increase the overall energy dissipation capacity of the bearing. The shear equivalent stiffness, vertical equivalent stiffness and vertical equivalent damping ratio after 2 million fatigue cycles are less than 0.3, and the bearing has good fatigue performance.
关键词
桥梁工程 /
金属橡胶 /
支座 /
疲劳试验 /
损伤因子
{{custom_keyword}} /
Key words
Bridge engineering /
metal rubber /
bearings /
fatigue test /
damage factor
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张颖周. 新型桥梁支座力学性能试验研究[D].兰州:兰州交通大学, 2018.
[2] 夏修身,张颖周,陈兴冲,等.金属橡胶支座力学性能试验[J]. 长安大学学报(自然科学版), 2019, 39(04): 92-99.
XIA Xiu-shen, ZHANG Ying-zhou, CHEN Xing-chong, et al. Mechanical property test of metal rubber bearing [J]. Journal of Chang'an University (Natural Science Edition), 2019, 39(04): 92-99.
[3] 夏修身,张颖周,杜骞. 金属橡胶桥梁支座转动性能试验研究[J]. 兰州交通大学学报, 2021, 40(01): 1-5.
XIA Xiu-shen, ZHANG Ying-zhou, DU Qian. Experimental study on the rotational performance of metal rubber bridge bearings[J]. Journal of Lanzhou Jiaotong University, 2021, 40(01): 1-5.
[4] 孙森林.金属橡胶支座剪切性能研究[D].兰州: 兰州交通大学,2021.
[5] 夏修身,张颖周.金属橡胶支座压缩性能试验研究[J]. 应用基础与工程科学学报, 2021, 29(04): 952-960.
XIA Xiu-shen, ZHANG Ying-zhou. Experimental study on compression performance of metal rubber bearings [J]. Journal of Applied Basic and Engineering Sciences, 2021, 29(04): 952-960.
[6] XIA X S, WU S W, SUN S L, et al. Lateral hysteretic behavior of a novel metal rubber bridge bearing[J]. Engineering Structures, 2022, 256: 114051.
[7] LI Y M, BAI H B, YANG J C. Fatigue Damage Character of Metal Rubber Material[J]. Advanced Materials Research, 2012, 1639: 457-458.
[8] 陈祺鑫,黄伟,任志英等.大环径比O形金属橡胶密封件的疲劳力学特性及试验研究[J].摩擦学学报, 2021, 41 (03):293-303.
CHEN Qi-xin, HUANG Wei, REN Zhi-ying, et al. Fatigue mechanical properties and experimental research of O-ring metal rubber seals with large ring to diameter ratio [J]. Journal of Tribology, 2021, 41(03): 293-303.
[9] 苏海洋. 金属橡胶隔振器疲劳特性试验及仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[10] 卢成壮,李静媛,周邦阳等. 金属丝特性对金属橡胶疲劳性能的影响[J]. 振动与冲击,2018,37(24):137-142.
LU Cheng-zhuang, LI Jing-yuan, ZHOU Bang-yang, et al. The effect of metal wire characteristics on the fatigue performance of metal rubber [J]. Vibration and Impact, 2018, 37(24): 137-142.
[11] 董秀萍,刘国权,杨建春等. 金属橡胶隔振构件中不锈钢丝疲劳断裂的原因[J]. 机械工程材料, 2009, 33(04): 35-38+42.
DONG Xiu-ping, LIU Guo-quan, YANG Jian-chun, et al. Causes of fatigue fracture of stainless steel wire in metal rubber isolation components [J]. Mechanical Engineering Materials, 2009, 33 (04): 35-38+42.
[12] 曹凤利,白鸿柏,王尤颜等. 振幅对金属橡胶材料疲劳寿命的影响分析[J]. 中国机械工程,2013,24(05):671-675.
CAO Feng-li, BAI Hong-bai, WANG You-yan, et al. Analysis of the Effect of Amplitude on the Fatigue Life of Metal Rubber Materials [J]. China Mechanical Engineering, 2013, 24(05): 671-675.
[13] CAO F L, BAI H B, YANG J C, et al. Analysis on Fatigue Damage of Metal Rubber Vibration Isolator[J].Advanced Materials Research, 2012, 1700 (490-495).
[14] 王尤颜,白鸿柏,侯军芳. 金属橡胶材料疲劳损伤性能研究[J]. 机械工程学报, 2011, 47(02): 65-71.
WANG You-yan, BAI Hong-bai, HOU Jun-fang. Study on fatigue damage performance of metal rubber materials [J]. Journal of Mechanical Engineering, 2011, 47(02): 65-71.
[15] GB/T 20688.1-2007. 橡胶支座 第1部分:隔震橡胶支座试验方法[S]. 北京: 中国标准出版社, 2007.
[16] 李瑶琳. 金属丝网橡胶减振器的疲劳寿命试验研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[17] 杜骞. 金属橡胶支座桥梁抗震性能研究[D]. 兰州: 兰州交通大学, 2021.
[18] 马艳红,张启成,张大义等. 静载荷作用下金属橡胶失效判据及耐久性试验[J].北京航空航天大学学报, 2016, 42(02): 227-235.
MA Yan-hong, ZHANG Qi-cheng, ZHANG Da-yi, et al. Failure criteria and durability test of metal rubber under static load [J]. Journal of Beihang University, 2016, 42(02): 227-235.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}