基于复合前馈补偿的混合磁悬浮CMG转子主动振动控制

崔培玲 1, 2,盖玉欢 1, 2,李海涛 1, 2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 161-166.

PDF(2199 KB)
PDF(2199 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (22) : 161-166.
论文

基于复合前馈补偿的混合磁悬浮CMG转子主动振动控制

  • 崔培玲 1, 2 ,盖玉欢 1, 2 ,李海涛 1, 2
作者信息 +

Active Vibration Control of Active-passive hybrid Magnetically Suspended Rotor Based on Composite Feedforward Compensation Method

  • CUI Pei-ling 1,2, GE Yu-huan 1,2, LI Hai-tao 1,2
Author information +
文章历史 +

摘要

混合磁悬浮控制力矩陀螺转子高速旋转时产生与转速同频的振动。为实现主动振动控制,本文分析了被动磁轴承在径向平动自由度上的耦合磁力随转子径向扭转角的变化规律,提出了基于复合前馈补偿的混合磁悬浮转子主动振动控制方法,在同频位移刚度力超前前馈补偿中考虑被动磁轴承径向耦合磁力的影响,同时在两径向通道之间补偿同频耦合电流刚度力。仿真结果表明,该主动振动控制方法使同频轴承力减小到未补偿前的9.3%,验证了该方法的有效性。

Abstract

When the active-passive hybrid magnetically suspended Control Moment Gyro (CMG) rotor rotates, synchronous vibrations are caused. To achieve active vibration control, the coupling characteristic along the radial deflection angles between passive and active bearings was analyzed. Based on this, the composite feedforward compensation method for active vibration control of active-passive hybrid magnetically suspended rotor was proposed. The impact of coupling magnetic forces between active and passive bearings was taken into account in the process of lead feedforward compensation for displacement stiffness forces. And the coupling current stiffness forces were compensated between the radial degrees. Simulation results show that, the proposed method can reduce the synchronous bearing forces to 9.3% of that without compensating the couplings.
 

关键词

混合磁悬浮转子 / 耦合磁力 / 主动振动控制 / 复合前馈补偿

Key words

Active-passive hybrid magnetically suspended rotor / Coupling magnetic forces / Active vibration control / Composite feedforward compensation

引用本文

导出引用
崔培玲 1, 2,盖玉欢 1, 2,李海涛 1, 2. 基于复合前馈补偿的混合磁悬浮CMG转子主动振动控制[J]. 振动与冲击, 2015, 34(22): 161-166
CUI Pei-ling 1,2, GE Yu-huan 1,2, LI Hai-tao 1,2. Active Vibration Control of Active-passive hybrid Magnetically Suspended Rotor Based on Composite Feedforward Compensation Method[J]. Journal of Vibration and Shock, 2015, 34(22): 161-166

参考文献

[1] 肖鹏飞, 谢振字, 徐欣, 等. 传感器冗余的磁悬浮轴承转子系统研究[J]. 振动与冲击, 2012, 31(14): 143-156.
XIAO Peng-fei, XIE Zhen-yu, XU Xin, et al. Active magnetic bearing rotor system with redundant sensors [J].Journal of vibration and shock, 2012, 31(14): 143-156.
[2] 龙亚文, 谢振宇, 徐欣. 磁悬浮轴承H∞鲁棒控制策略研
究[J]. 振动与冲击, 2013, 32(23): 115-120.
LONG Ya-wen, XIE Zhen-yu, XU Xin. H∞ robust control strategy for an active magnetic bearing[J]. Journal of vibration and shock, 2013, 32(23): 115-120.
[3] 乔晓利, 祝长生. 基于内置力执行器的砂轮不平衡振动
主动控制[J]. 振动与冲击, 2012, 31(24): 125-130.
QIAO Xiao-li, ZHU Chang-sheng. A built-in force actuator for unbalanced vibration active control of a grinding wheel [J]. Journal of vibration and shock, 2012, 31(24): 125-130
[4] 郑龙席, 高晓果, 李晓丰. 某微型涡喷发动机现场瞬态动平衡技术[J]. 振动、测试与诊断, 2008, 28(3): 282-285.
ZHENG Long-xi, GAO Xiao-guo, LI Xiaof-eng. Transient field balancing technique for a micro turbo-jet engine [J]. Journal of Vibration, measurement & Diagnosis, 2008, 28(3): 282-285.
[5] 韩辅君, 房建成. 磁悬浮飞轮转子系统的现场动平衡方法[J]. 航空学报, 2010, 31(1): 184-190.
HAN Fu-jun, FANG Jian-cheng. Field balancing method for rotor system of a magnetic suspending flywheel [J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 184-190.
[6] Herzog R, Bühler P, Gahler C, et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings [J]. IEEE Transactions on Control Systems Technology, 1996, 4(5): 580-586.
[7] Shi J, Zmood R, Qin L J. The indirect method for adaptive feedforward vibration control of magnetic bearing systems[C]. Proceedings of the Eighth International Symposium on Magnetic Bearings. Mito, 2002: 223-228.
[8] Markert R, Skricka N, Zhang X T. Unbalance compensation on flexible rotors by magnetic bearings using transfer functions[C]. Proceedings of the Eighth International Symposium on Magnetic Bearings. Mito, 2002: 417-442.
[9] Matras A L, Flowers G T, Fuentes R, et al. Suppression of persistent rotor vibrations using adaptive techniques [J]. Journal of Vibration and Acoustics (ASME), 2006, 128(6): 682-689.
[10] 蒋科坚, 祝长生. 基于不平衡识别的主动电磁轴承转子系统自动平衡[J]. 振动工程学报, 2009, 22(6): 559-564.
JIANG Ke-jian, ZHU Chang-sheng. Auto balance of active magnetic bearings for rotor support system by means of unbalance identification [J]. Journal of Vibration Engineering, 2009, 22(6): 559-564.
[11] Tang J Q, Liu B, Fang J CH, et al. Suppression of vibration caused by residual unbalance of rotor for magnetically suspended flywheel [J]. Journal of Vibration and Control, 2013, 19(13): 1963-1979.
[12] 刘彬, 房建成, 刘刚, 等. 磁悬浮飞轮不平衡振动控制方法与试验研究[J]. 机械工程学报, 2010, 46(12): 188-194.
LIU Bin, FANG Jian-cheng, LIU Gang, et al. Unbalance vibration control and experiment research of magnetically suspended flywheels [J]. Chinese Journal of Mechanical Engineering, 2010, 46(12): 188-194.
[13] 魏彤, 向岷. 磁悬浮高速转子基于位移刚度力超前前馈补偿的高精度自动平衡方法[J].机械工程学报, 2012, 48(16): 184-191.
WEI Tong, XIANG Min. Autobalancing for magnetically suspended high-speed rotors based on lead feedforward compensation for displacement stiffness force [J]. Chinese Journal of Mechanical Engineering, 2012, 48(16): 184-191.
[14] 文通. 主被动磁悬浮反作用飞轮永磁偏置混合磁轴承控制方法研究[D]. 北京: 北京航空航天大学, 2012.
WEN Tong. Study on control of the permanent magnet biased magnetic bearing used in the active-passive hybrid magnetic suspension reaction flywheel [D]. Beijing: Beihang university, 2012.
[15] Wen T, Fang J CH. The exact feedback linearization control for the 2-DOF flywheel suspended by the passive and active hybrid magnetic bearings[C]. The International Conference on Electronics, Communications and Control. Ningbo: [P. R.], 2011: 2922-2926.
[16] Azukizawa T, Yamamoto S, Matsuo N. Feasibility study of a passive magnetic bearing using the ring shaped permanent magnets[J]. IEEE Transactions on Magnetics, 2008, 44(11):4277-4280.

PDF(2199 KB)

798

Accesses

0

Citation

Detail

段落导航
相关文章

/