地震荷载作用下如何评判桥上列车的行车安全性关系到高速铁路线路的运营安全。基于车轮-钢轨间的几何约束关系,在原有列车-轨道-桥梁-地震分析系统TTBSAS中引入列车行车安全性评判的几何指标—接触点横移量和车轮抬升量,通过输入实测地震波系统研究了接触点横移量和车轮抬升量随地震动强度的变化规律,并提出了基于几何指标的列车地震安全性评判方法。结果表明:采用传统的脱轨系数和轮重减载率指标评判地震作用下桥上列车的行车安全性过于保守;车轮抬升量对地震动强度的变化更敏锐,更适合评判地震作用下桥上列车的行车安全性;依据车轮抬升量将列车的行车安全性划分为安全、危险和脱轨3个状态较为合理,对于该计算条件,当地震动强度为0.1g时,其安全、危险和脱轨车速分别速为225 km/h、250 km/h、375 km/h。该研究成果为灾变荷载作用下桥上列车的行车安全性评定提供了新思路。
Abstract
How to judge running safety of train on a bridge under seismic load is related to the operation safety of high-speed railway lines. Here, based on geometric constraint relation between wheel and rail, geometric indexes of train running safety evaluation including contact point transverse shift and wheel vertical rise were introduced into the original train-track-bridgeseismic analysis system (TTBSAS). Through inputting actual measured seismic wave, varyinglaws of contact point transverse shift and wheel vertical rise with variation of seismic intensity were studied, and a train running safety evaluation method based on geometric indexeswas proposed. Results showedthat using traditional indexes of derailment coefficient and wheel load reduction rate to evaluate the running safety of train on a bridge under earthquakeare excessively conservative; wheel vertical rise is more sensitive to variation of ground motion intensity, using it is more suitable to evaluate running safety of train on a bridge under earthquake; according to wheel vertical rise, it is reasonable to divide the train running safety into 3 states of safety, danger and derailment; for calculation conditions here, when the ground motion intensity is 0.1g, train’s safe running speed, dangerous one and derailment one are 225 km/h, 250 km/h and 375 km/h, respectively; the study results provide a new idea for running safety evaluation of train on a bridge under catastrophic loads.
关键词
高速铁路桥梁 /
车桥耦合振动 /
行车安全性 /
接触点横移量 /
车轮抬升量
{{custom_keyword}} /
Key words
high-speed railway bridge /
vehicle-bridge coupled vibration /
running safety /
contact point transverse shift /
wheel vertical rise
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]翟婉明,夏禾. 列车-轨道-桥梁动力相互作用理论与工程应用[M]. 北京:科学出版社, 2011.
ZHAI Wanming, XIA He. Train-track-bridge dynamic interaction theory and engineering application [M]. Beijing: Science Press, 2011.
[2]翟婉明, 陈果. 根据车轮抬升量评判车辆脱轨的方法与准则[J]. 铁道学报, 2001, 23(2): 17-26.
ZHAI Wanming, CHEN Guo. Method and criteria for evaluation of wheel derailment based on wheel vertical rise [J]. Journal of the China Railway Society, 2001, 23(2): 17-26.
[3]杜宪亭, 夏禾. 地震空间变异性对车桥系统响应的影响分析[J]. 工程力学, 2012, 29(9):106-111.
DU Xianting, XIA He. Influence of spatial variation of seismic ground motion on dynamic response of train-bridge system [J]. Engineering Mechanics, 2012, 29(9):106-111.
[4]孙丽霞, 姚建伟. 高速铁道车辆蛇行脱轨安全性评判方法研究[J]. 中国铁道科学, 2013, 34(5): 82-92.
SUN Lixia, YAO Jianwei. Hunting derailment safety evaluation method of high speed railway vehicle [J]. China Railway Science, 2013, 34(5): 82-92.
[5]肖新标. 复杂环境状态下高速列车脱轨机理研究[D]. 成都: 西南交通大学, 2013.
XIAO Xinbiao. Study on high-speed train derailment mechanism in severe environment [D]. Chengdu: Southwest Jiaotong University, 2013.
[6]Jin Z B, Pei S L, Li X Z, et al. Effect of vertical ground motion on earthquake-induced derailment of railway vehicles over simply-supported bridges [J]. Journal of Sound and Vibration, 2016, 383: 277-294.
[7]Xiao X B, Ling L, Jin X S. A study of the derailment mechanism of a high speed train due to an earthquake [J]. Vehicle System Dynamics, 2012, 50(3): 449-470.
[8]吴兴文. 地震条件下车辆脱轨安全性研究[D]. 成都: 西南交通大学, 2016.
WU Xingwen. Running safety assessment of railway vehicles under the earthquake excitations [D]. Chengdu: Southwest Jiaotong University, 2016.
[9]王开云, 王少林, 杨久川, 等. 地震环境下铁路轮轨动态安全性能及脱轨研究进展[J]. 地震工程与工程振动, 2012, 32(6): 82-94.
WANG Kaiyun, WANG Shaolin, YANG Jiuchuan, et al. Progress in study on wheel/rail dynamic safety and derailment of railway during an earthquake [J]. Journal of Earthquake Engineering and Engineering Vibration, 2012, 32(6): 82-94.
[10]郭力荣, 王开云, 王惠琼, 等. 动车低速脱轨的动态响应[J]. 交通运输工程学报, 2015, 15(4): 52-60+68.
GUO Lirong, WANG Kaiyun, WANG Huiqiong, et al. Dynamic responses of motor vehicle in low-speed derailment [J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 52-60+68.
[11]雷虎军, 李小珍. 非一致地震激励下列车-轨道-桥梁耦合振动及行车安全性研究[J]. 中国铁道科学, 2014, 35(6): 138-140.
LEI Hu-jun, LI Xiao-zhen. Coupling vibration and running safety of train-track-bridge system under non-uniform seismic excitations [J]. China Railway Science, 2014, 35(6): 138-140.
[12]李小珍. 高速铁路列车~桥梁系统耦合振动理论及应用研究[D]. 成都: 西南交通大学, 2000.
LI Xiaozhen. Studies on Theory and Application of Train-Bridge System Coupling Vibration in High-speed Railway [D]. Chengdu: Southwest Jiaotong University, 2000.
[13]Shen Z Y, Hedrick J K, Elkins J A. A comparison of alternative creep-force models for rail vehicle dynamic analysis [C]. 8th IAVSD Symp, Cambridge, Ma. 1984, 591-605.
[14]杨海洋, 钟铁毅, 夏禾. 铁路悬索桥纵向非一致激励地震响应分析[J]. 振动与冲击, 2014, 33(22): 157-163.
YANG Haiyang, ZHONG Tieyi, XIA He. Seismic responses analysis of a railway suspension bridge under longitudinal non-uniform excitations [J]. Journal of Vibration and Shock, 2014, 33(22): 157-163.
[15]刘常亮, 尹训强, 林皋, 等. 基于ANSYS平台的高速列车-轨道-桥梁时变系统地震响应分析[J]. 振动与冲击, 2013, 32(21): 58-64.
LIU Changliang, YIN Xunqiang, LIN Gao, et al. Seismic response analysis of a time-varying high speed train-rail-bridge system based on ANSYS [J]. Journal of Vibration and Shock, 2013, 32(21): 58-64.
[16]Li X Z, Zhang Z J, Zhang X. Using elastic bridge bearings to reduce train-induced ground vibrations: An experimental and numerical study [J]. Soil Dynamics & Earthquake Engineering, 2016, 85: 78-90.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}