为提升某轻型客车平顺性,进行了空气弹簧性能和悬架系统的匹配研究。建立了整车多体动力学模型,通过前悬架K&C台架试验、后悬架理论计算验证了悬架仿真模型的准确性,仿真得出脉冲路面输入下乘客位置在20km/h垂向加速度过大。搭建联合仿真平台,以扭杆弹簧和空气弹簧参数为设计变量,采用径向基神经网络和神经网络建立了驾驶员位置、乘客位置垂向加速度代理模型,并结合遗传算法对代理模型进行多目标优化,得出悬架参数优化方案。结果表明:优化后车辆以20km/h、30km/h过脉冲路面时,乘客位置的最大垂向加速度分别减小了26.46%和24.88%;在以80km/h速度过B级随机路面时,乘客位置的垂向加速度均方根值 减小了23.72%。 同时,驾驶员位置平顺性基本不变,明显改善了整车平顺性。
Abstract
In order to improve the ride comfort of a light bus, the matching research of air spring performance and suspension system was carried out. The multi-body dynamics model of the whole vehicle is established, and the accuracy of the suspension simulation model is verified through the K&C bench test of the front suspension and the theoretical calculation of the rear suspension. is too big. A co-simulation platform is built, and the parameters of torsion bar spring and air spring are used as design variables, and radial basis neural network and neural network are used to establish the vertical acceleration surrogate model of driver position and passenger position, and the surrogate model is multi-objective combined with genetic algorithm Optimization, the suspension parameter optimization scheme is obtained. The results show that: when the optimized vehicle passes the impulse road at 20km/h and 30km/h, the maximum vertical acceleration of the passenger position is reduced by 26.46% and 24.88% respectively; The rms value of the vertical acceleration of the position is reduced by 23.72%. At the same time, the smoothness of the driver's position remains basically unchanged, which significantly improves the smoothness of the entire vehicle.
关键词
空气悬架 /
平顺性 /
多目标优化 /
NSGA-II /
代理模型
{{custom_keyword}} /
Key words
Air suspension /
ride comfort /
multi-objective optimization /
NSGA-II /
proxy model
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陆建辉,周孔亢,侯永涛,等.基于遗传算法的厢式货车平顺性优化[J].机械工程学报,2017,53(20):121-130.
LU Jianhui, ZHOU Kongkang, HOU Yongtao,et al. Ride optimization of van truck based on genetic algorithm [J].Chinese Journal of Mechanical Engineering, 2017,53(20):121-130.
[2] 李仲兴,琚龙玉,江洪,等.可变容积附加气室空气悬架的参数优化与控制[J].汽车工程,2015,37(08):941-945.
LI Zhongxing, JU Longyu, JIANG Hong,et al. Parameter optimization and control of air suspension with adjustable auxiliary chamber [J]. Chinese Journal of Automotive Engineering, 2015,37(08):941-945.
[3] 周兵,陈逸彬,耿元,等.互联悬架液压参数灵敏度分析及优化[J].中国机械工程,2017,28(19):2269-2274.
Zhou Bing, Chen Yibin, Geng Yuan,et al. Analysis on hydraulic parameters of interconnected suspensions based on fuzzy grey correlation [J]. Chinese Journal of Construction Machinery, 2017,28(19):2269-2274.
[4] 庞辉,彭威,原园.随机激励下重载车辆空气悬架参数多目标优化[J].振动与冲击,2014,33(06):156-160+178.
PANG Hui,PENG Wei,YUAN Yuan. Multi-objective optimization of pneumatic suspension parameters for heavy vehicle under random excitation [J]. Journal of Vibration and Shock, 2014,33(06):156-160+178.
[5] 杨启耀,周孔亢,李敬东,等.基于神经网络的空气悬架系统匹配优化[J].农业机械学报,2009,40(04):18-22+26.
YANG Qiyao, ZHOU Kongkang, LI Jingdong,et al.. Neural network optimization on matching of air suspension system [J].Transactions of the Chinese Society of Agricultural Machinery, 2009,40(04):18-22+26.
[6] 陈龙,周立开,江浩斌,等.车辆悬架阻尼的神经网络优化设计与试验研究[J].中国机械工程,2005(18):1666-1669.
CHEN Long,ZHOU Likai,JIANG Haobin,et al. Neural network optimization and test on suspension dampings of vehicles [J]. Chinese Journal of Construction Machinery, 2005(18):1666-1669.
[7] 赵林峰,胡金芳,张荣芸.重型牵引车驾驶室悬置与悬架参数的集成优化设计[J].中国机械工程,2016,27(06):791-795+800.
Zhao Linfeng, Hu Jinfang, Zhang Rongyun. Integrated optimization design of cab suspension and suspension parameters for heavy tractor [J]. Chinese Journal of Construction Machinery, 2016,27(06):791-795+800.
[8] ŠAGI G. Multi-objective optimization model in the vehicle suspension system development process[J]. Tehnicki vjesnik-Technical Gazette,2015,22(4).
[9] GONCALVES P C, ,JORGE A,AMBROSIO C. Optimization of Vehicle Suspension Systems for Improved Comfort of Road Vehicles Using Flexible Multibody Dynamics[J]. Nonlinear Dynamics,2003,34(1-2).
[10] 伍文广,谷正气,米承继.基于刚柔耦合模型的电动轮自卸车平顺性分析与优化[J].中国机械工程,2014,25(20):2819-2824.
Wu Wenguang, Gu Zhengqi, Mi Chengji. Analysis and optimization of ride comfort of electric wheel dump truck based on a rigid-flexible coupling model [J]. Chinese Journal of Construction Machinery, 2014,25(20):2819-2824.
[11] MAHMOODI M,JAVANSHIR I,ASADI K,et al. Optimization of suspension system of off-road vehicle for vehicle performance improvement[J]. Journal of Central South University,2013,20(4).
[12] ANIRBAN C M,GOURAY J D,SAAISH R P,et al. Optimization of Passive Vehicle Suspension System by Genetic Algorithm[J]. Procedia Engineering,2016,144(C).
[13] 雍文亮. 重型牵引车整车平顺性分析与空气悬架系统参数优化[D].合肥工业大学,2013.
YONG Wenliang. Ride comfort analysis and air suspension system parameter optimization of heavy tractor [D]. Hefei University of Technology, 2013.
[14] 陈军.MSC ADAMS 技术与工程分析实例[M]..北京:中国水利水电出版社,2008:181-191.
CHEN Jun. MSC ADAMS technology and engineering analysis example[M].. Beijing: China Water Power Press, 2008:181-191.
[15] 周长城.汽车平顺性与悬架系统设计[M].北京:机械工业出版社,2011:171-172.
ZHOU Changcheng. Car ride comfort and suspension system design[M]. Beijing: Mechanical Industry Press, 2011:171-172.
[16] 喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005.
YU Fan, Lin Yi. Automotive System Dynamics[M]. Beijing: Mechanical Industry Press, 2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}