轴向运动梁的横向随机响应

马国亮;陈立群;

振动与冲击 ›› 2014, Vol. 33 ›› Issue (9) : 78-82.

PDF(1416 KB)
PDF(1416 KB)
振动与冲击 ›› 2014, Vol. 33 ›› Issue (9) : 78-82.
论文

轴向运动梁的横向随机响应

  • 马国亮1,陈立群1,2
作者信息 +

Random Response of Transverse Vibration of Axially Moving Beam

  • MA Guo liang1,CHEN Li qun1,2
Author information +
文章历史 +

摘要

轴向运动梁是许多飞行器结构的简化模型,随着长细比增加和质量减小,梁的弹性特征愈加明显,同时运动速度对运动梁的振动特性也有显著影响。根据汉密尔顿原理(Hamilton’s principle),推导出轴向运动欧拉—伯努利(Euler—Bernoulli) 梁模型受横向激励作用时的动力学控制方程。首先,在有轴向力和无轴力情况下分别对方程进行无量纲化、复模态分析,得到统一形式的频率方程和模态函数,可以用数值方法求解其固有频率和模态函数。然后,将动力学方程解耦为一个微分方程组,求解方程组,得到轴向运动梁在横向激励下位移的响应。最后,用数理统计的方法,计算随机响应的相关函数,再做傅里叶变换(Fourier transform)后得到复数形式的随机响应谱。数值算例的结果表明,轴向运动速度对自由梁的振动特性和随机响应有显著影响。

Abstract

The axially moving beam is a simplified model for many aircraft structures. The elasticity is patently obvious with slenderness increased and quality reduced, and the velocity has significant effect on vibration characteristics at the same time. The dynamic equation of transverse vibration of axially moving beam, subjected to a transverse excitation is derived from Hamilton’s principle. At first, dimensionless method and complex modal analysis method are applied to simplify the equation as there is an axial force or not respectively, also the frequency equation and modal function can be determined, which can be calculated using numerical method. Then, the decoupling method is used to simplify the control equation into a set of differential equations, the displacement response of transverse vibration is yielded after solving that equations. Finally, random response’s correlation function is calculated by using the method of mathematical statistics, and the random response spectrum is given via Fourier transform. The numerical example illustrates that velocity could affect vibration characteristics and random response significantly.


关键词

轴向运动梁 / 复模态 / 傅里叶变换 / 随机响应

Key words

axially moving beam / complex modal / Fourier transform / random response

引用本文

导出引用
马国亮;陈立群;. 轴向运动梁的横向随机响应[J]. 振动与冲击, 2014, 33(9): 78-82
MA Guo liang;CHEN Li qun;. Random Response of Transverse Vibration of Axially Moving Beam [J]. Journal of Vibration and Shock, 2014, 33(9): 78-82

PDF(1416 KB)

Accesses

Citation

Detail

段落导航
相关文章

/