针对机械振动信号非平稳特性,利用经验模式分解法将其分解为若干个内在的振荡模式(即基本模式分量),从而使得不同的基本模式包含有不同的设备状态信息。借助近似熵的概念,可定理描述原始信号和各振荡模式的复杂性,实现对机械振动信号内在模式复杂性的定理评估。该方法不仅有助于揭示和认识转子系统的复杂动力学行为,还能有效地监测系统状态的早期变化,及时捕捉机组潜在的隐患,预防故障的升级恶化。工程应用实例表明,该方法可有效提取机组的故障信息,从而为机械设备状态监测和故障诊断提供一种行之有效的新方法。