证据理论结合灰色神经网络混合识别方法在苏通长江大桥状态预测中的应用

孟庆成;齐 欣;李 乔;卜一之

振动与冲击 ›› 2009, Vol. 28 ›› Issue (11) : 96-99.

PDF(873 KB)
PDF(873 KB)
振动与冲击 ›› 2009, Vol. 28 ›› Issue (11) : 96-99.
论文

证据理论结合灰色神经网络混合识别方法在苏通长江大桥状态预测中的应用

  • 孟庆成;齐 欣;李 乔;卜一之
作者信息 +

The research of state prediction based on the evidence theory and grey-neural network model for SU-TONG Bridge

  • MENG Qingcheng, QI Xin, LI Qiao, Bu Yizhi
Author information +
文章历史 +

摘要

为解决千米级斜拉桥在施工过程中由于观测噪声及初始构件误差等因素影响下的结构响应预测问题,提出了D-S证据理论与灰色神经网络结合的混合识别方法。融合后的混合识别方法,在数据不完备的情况下,具有良好的预测功能。根据实际结构识别结果验证了方法的有效性和准确性,分析并比较了本文方法与传统识别方法的结果。实践研究表明,参数预测的D-S证据理论与灰色神经网络混合识别方法能够显著改善传统方法的识别准确性问题。

Abstract

To improve the state prediction of thousand-meter scale cable-stayed bridge by indeterminate factors such as measurement noise and initial component error during the construction process, a state prediction method based on the evidence theory and grey-neural network model is proposed. The fusion theory makes it possible to effectively predict even in the case of insufficient samples or incomplete data. The validity and accuracy of the proposed method is demonstrated through actual structure. Compare and analyze the result of traditional method and the proposed. Practice results show that the parameter prediction based on the evidence theory and grey-neural network model can improve the estimation accuracy of traditional method.

关键词

D-S证据理论 / 灰色神经网络 / 参数识别 / 千米级 / 斜拉桥

Key words

D-S evidence theory / grey-neural network model / parameter estimation / a thousand-meter scale / cable-stayed bridge

引用本文

导出引用
孟庆成;齐 欣;李 乔;卜一之. 证据理论结合灰色神经网络混合识别方法在苏通长江大桥状态预测中的应用[J]. 振动与冲击, 2009, 28(11): 96-99
MENG Qingcheng;QI Xin;LI Qiao;Bu Yizhi. The research of state prediction based on the evidence theory and grey-neural network model for SU-TONG Bridge [J]. Journal of Vibration and Shock, 2009, 28(11): 96-99

PDF(873 KB)

Accesses

Citation

Detail

段落导航
相关文章

/