考虑了轧制界面间的非线性阻尼以及辊系间的非线性刚度,建立了四辊轧机辊系垂直非线性参激振动模型。采用多尺度法求解了系统在不同频率激励下的主共振、超谐波共振以及亚谐波共振的解析近似解,得到了系统的幅频特性方程。分析了该系统的稳定性,得到了阻尼与刚度对系统稳定性的影响关系。分析了非线性刚度、非线性阻尼等参数对系统振动的影响,得到非线性刚度的变化会引起激励幅值的跳跃,导致幅值的振荡。用数值仿真验证了分析结果的正确性。研究结果为抑制轧机辊系这类垂直颤振提供了一定理论指导。
考虑到较厚的阻尼层内高阶剪切效应不应忽略,使用Reddy的三阶位移场描述阻尼层的纵向位移,使得在分界面上不仅位移连续,而且应力连续,从而提出ACLD结构的一种新模型“应力连续模型”。在此基础上,使用谱有限元法(SFEM)对ACLD梁结构进行力学建模和数值模拟,并与传统Mead-Markus模型结果进行了比较。研究表明,应力连续模型在固有频率和模态损耗因子预测上优于传统Mead-Markus模型。
阶数估计是子空间系统辨识方法的一个重要环节,一直以来没有得到很好解决。回顾了以奇异值序列“间断”点、奇异值梯度序列“间断”点、NIC准则和奇异值准则 (SVC) 为判断依据的4种阶数估计方法。并在SVC的基础上提出改进方法MSVC。通过Monte Carlo试验比较了各准则的性能,结果表明MSVC的估计效果优于其它4种准则。并在试验结果的基础上给出了数据块Hankel矩阵的块行数和块列数的取值建议。
针对滚动轴承故障振动信号的强噪声背景与故障样本不易大量获取的问题,提出一种基于形态滤波与灰色关联度的滚动轴承故障诊断方法。采用形态闭与形态开相减构成的差值滤波器对故障信号进行滤波,不需要考虑振动信号的频谱特征与分布,即能够有效的提取故障频率特征;灰色关联度分析方法对小样本模式识别问题具有良好的分类效果,适用于滚动轴承的故障模式识别。首先对故障信号进行形态滤波,然后提取滤波后信号的故障特征频率的归一化幅值作为特征向量,最后通过待识别样本与标准故障模式的关联度来对故障模式进行分类。实例表明该方法能够取得良好的效果。
城市交通拥堵问题日益成为影响城市运转的重大问题,高架轨道交通是解决该问题的重要方式。高架轨道交通的运行过程中产生的噪声影响沿线居民的正常工作和休息,降低高架轨道交通噪声污染成为建造高架轨道交通必须解决的问题。建立一套适用于高架轨道交通噪声辐射的模型,有助于在建造轨道交通线之前合理的预估由于轨道交通造成的噪声辐射影响及传播特性,能使轨道线路设计初期就预先获知可能产生的噪声影响,从而改进设计方案。将列车视作一个线声源,各处声功率强度相等,采用单极子和偶极子传播模型拟合轻轨列车的通过噪声,建立了一种较为简单实用的预测模型,并通过高架轨道交通线附近的测量数据,分析了不同测点情形下模型的适用性,为今后预测高架轨道交通线的噪声辐射提供了参考。
基于单频激励下导出的板的能量流分析方程,将其应用推广到板受随机激励的情形,提出了宽带随机激励下板的响应能量及功率流的计算公式。对考虑弯曲和纵波场耦合的板结构给出了计算能量有限元耦合矩阵的一般方法。用能量有限元法对受到两个不相关宽带白噪声激励力作用的L型板的能量响应和功率流进行了计算,结果反映了各波场的能量在空间上的分布和它们在各波场内的流动特性,其中弯曲波场的功率流显示出相向功率流发生汇集和改变流向的特点。对该耦合结构的响应用统计能量分析法进行了求解,其结果与能量有限元法计算结果间较好的一致性验证了随机激励下板的能量有限元分析应用的正确性。
采用三维非线性有限元法模拟海底管道受到船锚或其他坠落物体的冲击碰撞过程,并采用Newmark法和N-R迭代法相结合求解了海底管道的动力响应过程,分析了物体形状、碰撞角度、物体与管道间摩擦、混凝土厚度及管道内压对管道碰撞的影响。结果表明相同撞击条件下,立方体和球体对管道的撞击产生的最大Mises应力要比圆锥体大的多,随着圆锥角角度的增加管道的最大Mises应力是增加的;碰撞角度为90°时对管道的影响最大;摩擦对管道撞击影响较小;管道最大Mises应力随着混凝土层厚度的增加而减小,但随混凝土厚度的增加,减小的幅度越来越小;内压的存在使管道等效应力增加,但能减小管壁上的局部变形,使得冲击能量更多被用来产生整体变形。
根据相似原理,对正八边形封闭式综合集成桅杆进行水池拖曳实验研究其流体动力特性,试验测量了桅杆表面的压力,分析总结了平均压力系数随雷诺数的变化规律;平均压力系数、脉动压力系数沿桅杆轴向和周向的分布规律;斯特哈尔数随雷诺数、攻角等参数的变化规律。结果表明:平均压力系数随雷诺数的增加而趋于稳定,且其沿桅杆轴向基本均匀分布而沿桅杆周向变化较大。实验得出的结论对全封闭式综合集成桅杆的结构设计具有重要的参考作用。
研究了斜拉索风致振动的疲劳损伤问题。首先,根据 Miner 线性累积损伤原理,给出了结构疲劳损伤的计算公式。其次,根据高周疲劳的特性,我们假设斜拉索的疲劳损伤符合 Basquin 疲劳估算模型。第三,在综合目前疲劳损伤既有研究的基础上,进一步提出评价不同风速和不同风攻角对斜拉索疲劳损伤影响的框架。最后,以松花江斜拉桥中的斜拉索为对象,基于动力时程法计算分析了在不同风速和不同风攻角情况下斜拉索上各节点的应力时程,再使用雨流计数法统计斜拉索的应力-应变循环历史,估算出在不同风速和不同风攻角下斜拉索的疲劳损伤。于是,定量地评价了在不同风速和不同风攻角对斜拉索疲劳损伤的影响。
声发射信号到达时间的信息,对于声发射事件的定位、识别以及声发射源机理分析都是非常重要的。实际应用中,常用人工读取或通过设定幅值阈值来获取信号的到达时间。针对以上常用方法的缺点,本文结合噪声信号的AR模型和声发射信号的AR模型,应用Akaike信息准则,实现了对声发射信号到达时间的自动识别。对实验数据的识别结果显示,该方法对信号的幅频特性变化比较敏感。在相同信噪比的情况下,该方法识别的偏差要小于阈值法。当信噪比较低时,阈值法可能会给出错误的结果,而该方法仍然能够给出较准确的结果。
为从机械故障信号中提取包含故障信息的特征频率,提出了基于EMD的多尺度形态学解调方法,该方法首先采用EMD方法将故障信号分解为有限个IMF分量,从中选取包含故障主要信息的IMF分量求和重构信号,再进行多尺度形态学解调,从而提取机械故障特征频率信息。将该方法用于滚动轴承、齿轮的故障诊断中,并与Hilbert包络方法比较,结果表明该方法能更好地提取故障特征频率,且对含噪故障信号也有较好的分析效果。
首先分析了单自由度等位移准则与结构屈服程度的关系,然后针对典型连续梁桥的特点,定义了名义屈服位移和名义屈服曲率,并通过改变主梁特性、桥墩特性和地震动输入等进行参数分析,将等位移准则由单自由度推广到多自由度。研究表明,当连续梁桥的主要振型的周期均大于对应单自由度等位移准则的周期下限,并且主要振型的质量参与系数之和超过90%时,非线性时程方法得到的位移与弹性反应谱方法得到的位移接近,等位移准则成立,可以采用弹性位移评估其非弹性位移。多自由度等位移准则的应用较大程度简化了相当一部分连续梁桥的横桥向位移需求的计算,为其基于位移的抗震设计提供了基础。
为改善返回舱座椅缓冲系统的性能,提出一种新的改进方案,将其脚部由铰接支撑改为斜置弹性支撑。在ADAMS中建立座椅缓冲系统的动力学模型,并采用参数化建模方法对斜置弹性支撑的参数进行优化设计。对优化后的座椅缓冲系统进行动力学仿真的结果表明,与改进前座椅系统的缓冲性能相比,优化后的座椅缓冲系统不仅没有增加胸背向冲击响应,而且显著改善了人体头盆向的冲击响应。
使用桥梁动力分析程序BDAP,对遂渝铁路主跨128m的薛家坝涪江特大桥进行车桥耦合动力仿真分析,得到桥梁及列车的动力响应。为检验桥跨结构的实际动力性能,进行全桥动力试验,测试其自振特性以及列车以不同速度通过桥跨时桥跨结构的动力响应。将试验结果与车桥耦合振动分析结果进行了比较,二者基本相符。结果表明,该桥具有良好的竖向刚度、横向刚度和结构强度,列车在桥上运行时对桥跨结构有一定的冲击作用,而列车行车具有良好的安全性与舒适度。
针对轴承传动本身具有非线性而在传统故障诊断中又被忽略掉的问题,提出了基于分形和混沌等非线性几何不变量的轴承故障诊断方法。该方法对测得的轴承振动时间序列去噪以后进行相空间重构,然后计算重构信号的分形维数、Lypunove指数、K熵、关联距离熵等多个几何不变量,并以此作为轴承故障诊断特征量,输入到径向基神经网络,对轴承故障进行模式识别。实验结果表明该方法能有效区别轴承各种故障状态,且为旋转机械的故障诊断提供了一种新方法。
以研究上承式大跨度钢拱桥的非线性地震响应和损伤机理为目的,应用考虑双非线性以及地震过程中轴力变化影响的计算方法,对跨度为200m的两铰拱桥和无铰拱桥设计方案进行了计算,分析了结构在强地震荷载作用下地震响应和损伤程度,比较了计算方法、输入地震波以及结构设计条件对地震响应计算结果的影响。结果表明,上承式钢拱桥具有较好的结构抗震性能,在强地震荷载作用下损伤程度不显著;钢拱桥在地震荷载作用下无卓越的振动振型,地震响应计算需考虑多个振型的影响;当拱肋轴力达到屈服轴力的20-30%时,弹塑性地震响应计算不宜忽略轴力变化的影响。几何非线性对拱肋的弯矩地震响应有较明显的影响;柔性的两铰拱桥由于自振周期长,受到的地震荷载比对应的无铰拱略小,损伤程度也相对较轻些;无铰拱桥在拱脚截面位置容易发生地震损伤,设计时应确保拱脚截面在屈服以后不发生局部失稳。
通过对一个三自由度弹性体系在垂直方向上分别加载多个不同主频的实测爆破地震波和理想正弦波,使用集中冲量法利用计算机编程求解出各爆破地震波激励下的竖向动力响应,并通过分析该结构体系的各动力响应幅值变化来探讨爆破地震波频率对三自由度弹性体系动力响应的具体影响。计算结果表明,结构的第一自振频率在分析结构各层质点的响应幅值中起主导地位;考虑爆破地震波是一个包含很多频率成分的复杂的振动信号,在分析实测爆破地震波频率对结构动态响应的影响时,除主频外,应同时考虑其它占有相当能量比例的优势频率的影响。
对拟负刚度与粘滞阻尼混合减振结构的动力特性与减振效果进行了研究。首先,通过加速度放大系数和位移放大系数对拟负刚度与粘滞阻尼混合减振结构的动力特性进行分析。其次,通过反应谱对地震作用下拟负刚度与粘滞阻尼混合减振结构的减振效果进行分析,并与粘滞阻尼减振结构的减振效果进行比较。研究结果表明:拟负刚度控制能够延长结构的等效周期;当结构周期较长时,拟负刚度与粘滞阻尼混合减振结构对绝对加速度和相对位移的减振效果好于粘滞阻尼减振结构。
在数字化时代,音频的转录或录制都会引入噪音,但是历史音频保存和音频资料处理需要纯净的音频信号,因此音频降噪研究有着重要的现实意义。该文首先介绍了二进小波和奇异性指数,并阐述了尺度跟踪和模极大值重构等理论,在Mallat工作的基础上,提出了一种基于小波滤波的音频降噪方法。该方法首先引入补偿因子削减二进小波变换对系数造成的影响,并计算带噪音频的小波系数和模极大值;然后基于信号和噪声奇异指数不同的特点,结合阈值降噪和尺度跟踪理论,采用层间相关搜索去除噪声的模极大值;最后利用交替投影算法,重建音频信号。本文用该方法处理带click和hiss噪声的音频信号,跟小波阈值方法和小波包方法相比,能达到较好的听觉效果和信噪比。同时观察信号的波形图及模极大值演示图,发现本方法都表现出优异的降噪效果。
在不同环境温度、激励频率和应变幅值下,对筒式粘弹性阻尼器的动力性能指标进行了试验研究,研究表明筒式粘弹性阻尼器具有较为稳定的动力性能,耗能能力强。往复振动下阻尼器因内升温引起粘弹性材料软化,动力性能指标变化较大,设计中应考虑荷载循环次数的影响。本文通过试验研究了滞回圈数对筒式粘弹性阻尼器动态力学性能的影响,并据此提出了设计建议。本文还介绍了筒式粘弹性阻尼器的老化性能试验和疲劳性能试验,试验结果表明具有良好的老化性能,在风振或地震下阻尼器具有较好的耐疲劳性能。最后介绍了筒式粘弹性阻尼器风振控制的工程应用实例,计算表明结构悬挑端竖向位移和加速度明显减小。
介绍一种基于预试验(Pre-test)的车身动态性能试验方法。首先介绍了Pre-test的理论及激励点与响应点选取原则和流程,通过Lms.Virtual.Lab的预试验功能实际确定车身试验模态中响应点的数目,位置及激励点位置和方向,并通过与Lms.Test.Lab的接口功能,导入到Test.Lab进行模态试验,通过合适的试验模态方法与参数的选取,得到准确清晰的模态辨识结果,验证了基于Pre-test的车身动态性能试验模态分析方法的正确性。
为了合理设置装甲板,并进行有效的性能评估,使用图解方法研究了能量平衡原理在装甲板弹道性能估算中的应用,并以不饱和聚酯树脂基玄武岩纤维增强复合材料和钢为例进行了实验验证,研究表明:估算过程中虽然没有从装甲板的毁伤机理方面研究,并简化了抗弹性能的影响参数,但保证了较高的估算精度,预测速度偏差在50m/s以下,预测相对偏差在10%以下,能够满足工程需要。