矩形脉冲激励下悬挂式弹簧系统冲击特性的研究

王蕾;陈安军;

振动与冲击 ›› 2012, Vol. 31 ›› Issue (11) : 142-144.

PDF(1198 KB)
PDF(1198 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (11) : 142-144.
论文

矩形脉冲激励下悬挂式弹簧系统冲击特性的研究

  • 王蕾1,陈安军1,2
作者信息 +

Shock characteristics of the suspension spring system under action of a rectangle pulse

  • WANG Lei1,CHEN An-jun1,2
Author information +
文章历史 +

摘要

以悬挂式弹簧系统为研究对象,建立了矩形脉冲激励下系统非线性无量纲动力学方程,利用龙格—库塔法对系统冲击特性进行数值分析。以系统加速度响应峰值与脉冲激励幅值之比为反映系统在冲击作用下的响应指标,脉冲激励时间、系统悬挂角为变量,构建了系统的三维冲击谱。讨论了系统悬挂角以及系统阻尼等对冲击谱的影响规律。研究表明,系统悬挂角、阻尼等对系统冲击响应峰值影响显著,增加阻尼可使系统加速度响应峰值明显降低。研究结论可为悬挂式弹簧减振系统的设计提供理论依据。

Abstract

The geometric nonlinear dimensionless dynamical equations of suspension spring system were developed under action of a rectangular pulse, and the numerical results of the shock characteristics were studied using Runge-Kutta method. A new concept of three-dimensional shock response spectra was obtained, the ratio of the maximum shock response acceleration of the system to the peak pulse acceleration, the pulse duration and the angle of the suspension spring of the system were three basic parameters of the three-dimension shock response spectra. Based on the numerical results, the effects of the angle of the suspension spring and damping ratio of the system on the shock spectra were discussed. It was shown that the effects of the angle of the suspension spring and the damping ratio of the system are particularly noticeable, the damping can obviously decrease the maximum shock response acceleration of the system. The proposed method provided reference for design of shock absorber with suspension spring system.

关键词

悬挂式弹簧 / 非线性 / 冲击特性 / 三维冲击谱

Key words

suspension spring system / geometric nonlinear / shock characteristic / three-dimension shock response spectrum

引用本文

导出引用
王蕾;陈安军;. 矩形脉冲激励下悬挂式弹簧系统冲击特性的研究[J]. 振动与冲击, 2012, 31(11): 142-144
WANG Lei;CHEN An-jun;. Shock characteristics of the suspension spring system under action of a rectangle pulse [J]. Journal of Vibration and Shock, 2012, 31(11): 142-144

PDF(1198 KB)

Accesses

Citation

Detail

段落导航
相关文章

/