满足稳定性要求的行星轮系统工作转速区间的确定方法

李同杰(;);朱如鹏();鲍和云();项昌乐();刘辉()

振动与冲击 ›› 2012, Vol. 31 ›› Issue (22) : 183-187.

PDF(1665 KB)
PDF(1665 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (22) : 183-187.
论文

满足稳定性要求的行星轮系统工作转速区间的确定方法

  • 李同杰(1,2), 朱如鹏(1), 鲍和云(1),项昌乐(3), 刘辉(3)
作者信息 +

Study on General Method of Working Speed Range Determination for a Planetary Gear Train Based on Stability Requirement and a Nonlinear Vibration Model

  • Li Tong-jie1,2,Zhu Ru-peng1, Bao He-yun , Xiang Chang-le3,Liu Hui3
Author information +
文章历史 +

摘要

本文研究了满足稳定性要求的行星齿轮系转速区间的确定方法。选取每个激振力周期内相轨迹的位移最大值点为Poincare截面,计算获得的转速分岔图能够同时判别系统的运动状态失稳以及振动强度失稳两种失稳形式,结合论文中给出的行星轮系工作转速区间选择的4条原则,即可方便地判断满足稳定性要求的系统工作转速区间。最后,以四自由度行星轮系纯扭转非线性振动模型为例,详细阐述了满足稳定性要求的行星轮系工作转速区间确定的全过程,通过剔除5类12处不稳定的转速区段,获得了无量纲转速在0.4123-1.2369之间可选的稳定速度区段。

Abstract

A general method of working speed range determination for a planetary gear train is studied based on stability requirement and a nonlinear vibration system. In the method, bifurcation diagram with working speed is calculated by using the method of maximum displacement in order to identify the instability of motion state and the instability of vibration amplitude in a diagram. The system’s stable working speed can be determined easily by using the bifurcation diagram and 4 speed range selection principles which is elaborated in this paper. As an example, the working speed of a planetary gear train with errors of transmission, time varying meshing stiffness and gear backlashes is studied and the results reveal that there are 5 kinds of instability forms and 12 instability speed regions in all in the region of dimensionless speed .

关键词

行星轮系 / 非线性振动模型 / 稳定性 / 工作转速区间确定

Key words

planetary gear set / nonlinear vibration model / stability / working speed range determination

引用本文

导出引用
李同杰(;);朱如鹏();鲍和云();项昌乐();刘辉() . 满足稳定性要求的行星轮系统工作转速区间的确定方法[J]. 振动与冲击, 2012, 31(22): 183-187
Li Tong-jie;Zhu Ru-peng;Bao He-yun;Xiang Chang-le;Liu Hui. Study on General Method of Working Speed Range Determination for a Planetary Gear Train Based on Stability Requirement and a Nonlinear Vibration Model[J]. Journal of Vibration and Shock, 2012, 31(22): 183-187

PDF(1665 KB)

Accesses

Citation

Detail

段落导航
相关文章

/