张志刚 石晓辉 陈哲明 汤宝平
. 2012, 31(22): 80-83.
针对滚动轴承故障特征往往被强背景噪声淹没的特点,提出一种基于改进经验模态分解(Empirical Mode Decomposition,EMD)与滑动峰态算法的滚动轴承故障特征提取方法。首先利用EMD方法分解原故障信号得到一组平稳固有模态分量(Intrinsic Mode Function,IMF)。然后采用互信息和广义相关系数筛选法消除传统EMD分解结果中虚假分量,并运用滑动峰态算法对真实IMF分量处理得到滑动峰态时间序列。最后计算滑动峰态序列频谱提取故障特征频率。滚动轴承的实例研究结果表明:该方法能够有效提取滚动轴承故障特征,可以取得比直接滑动峰态算法和传统包络解调分析更好的效果。