基于级联双稳随机共振和多重分形的机械故障诊断方法研究

郝 研;王太勇;万 剑;张 攀

振动与冲击 ›› 2012, Vol. 31 ›› Issue (8) : 181-185.

PDF(1733 KB)
PDF(1733 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (8) : 181-185.
论文

基于级联双稳随机共振和多重分形的机械故障诊断方法研究

  • 郝 研1,王太勇1,2,万 剑2,张 攀2
作者信息 +

mechanical fault diagnosis based on cascaded bistable stochastic resonance and multi-fractal

  • Hao Yan1, Wang Tai-yong1,2, Wan Jian2, Zhang Pan2
Author information +
文章历史 +

摘要

对级联双稳随机共振的滤波特性进行了对比和分析,利用这种特性,结合广义维数对信号非线性特征的度量能力,提出了基于级联双稳随机共振和多重分形的机械故障诊断方法。实验结果证明,该方法可以有效的消除高频噪声,增强低频段信号的能量,由此得到的分形维数比较准确,能够更加精确地度量机械振动信号的非线性特征,从而达到机械故障诊断的目的。

Abstract

The filtering performance of cascaded bistable stochastic resonance (CBSR) was analyzed. Depending on the filtering feature of CBSR and the measurement capability of general dimension for non-linear characteristics of signals, a method of mechanical fault diagnosis based on cascaded bistable stochastic resonance and multi-fractal was presented. The experiment results showed that this method, not only removing high frequency noise efficiently but also enhancing low frequency signals, obtained precise fractal dimension. The fractal dimension measured the non-linear characteristics of mechanical vibration signals accurately in order to implement mechanical fault diagnosis.

关键词

信息处理技术 / 级联双稳随机共振 / 多重分形 / 广义维数 / 故障诊断 / 滤波

Key words

signal processing technology / cascaded bistable stochastic resonance / multi-fractal / general dimension / fault diagnosis / filtering

引用本文

导出引用
郝 研;王太勇;万 剑;张 攀. 基于级联双稳随机共振和多重分形的机械故障诊断方法研究[J]. 振动与冲击, 2012, 31(8): 181-185
Hao Yan;Wang Tai-yong;Wan Jian;Zhang Pan. mechanical fault diagnosis based on cascaded bistable stochastic resonance and multi-fractal[J]. Journal of Vibration and Shock, 2012, 31(8): 181-185

PDF(1733 KB)

1450

Accesses

0

Citation

Detail

段落导航
相关文章

/