EMD和SLS法在爆破振动加速度信号时域积分中的应用

陆凡东;方 向;陈 勇;李 栋

振动与冲击 ›› 2012, Vol. 31 ›› Issue (9) : 90-93.

PDF(1880 KB)
PDF(1880 KB)
振动与冲击 ›› 2012, Vol. 31 ›› Issue (9) : 90-93.
论文

EMD和SLS法在爆破振动加速度信号时域积分中的应用

  • 陆凡东,方 向,陈 勇,李 栋
作者信息 +

Application of EMD and SLS in time integration of blasting vibration acceleration

  • LU Fan-dong, FANG Xiang, CHEN Yong, LI Dong
Author information +
文章历史 +

摘要

实测差异分析表明,速度振幅峰值分布受外界因素影响更具规律性,加速度信号主频分布比速度信号更分散。提出一种加速度信号时域积分算法,先基于经验模态分解法对信号进行趋势项剔除、去均值化和高频降噪,再对存在漂移现象的各固有模态函数分量时域积分速度分量进行最小二乘法处理。研究表明:各固有模态函数分量在处理过程中应分别对待;为达到较好降噪效果,阈值修正系数k应不断调整;分段最小二乘法对漂移现象的消除能力优于单段最小二乘法和经验模态分解法。最后,通过本文定义的全局参量和局部参量验证了算法的优越性。

Abstract

The analysis of measured differences showed that the distribution of peak vibration velocity value was more regular than that of acceleration under the influence of external factors, and main frequency distribution of vibration acceleration signals was more scattered. A time integration algorithm of acceleration signal was put forward: based on Empirical Mode Deposition, the signal was processed by residual elimination, mean remove and high-frequency de-noising; velocity components by time integration which exist drift phenomena were revised by Least Square method. Research showed: IMF components should be treated separately; to achieve better de-noising effect, threshold vilified coefficient k should be adjusted; Segment Least Square was superior to signal Segment Least Square and Empirical Mode Deposition towards the eliminating ability of drift phenomena. At last, the algorithm was vilified by new global and local parameters in this paper.

关键词

经验模态分解 / 分段最小二乘法 / 时域积分 / 评价参量

Key words

Empirical Mode Deposition / Segment Least Square / Time integration / Evaluation parameters

引用本文

导出引用
陆凡东;方 向;陈 勇;李 栋. EMD和SLS法在爆破振动加速度信号时域积分中的应用[J]. 振动与冲击, 2012, 31(9): 90-93
LU Fan-dong;FANG Xiang;CHEN Yong;LI Dong. Application of EMD and SLS in time integration of blasting vibration acceleration[J]. Journal of Vibration and Shock, 2012, 31(9): 90-93

PDF(1880 KB)

Accesses

Citation

Detail

段落导航
相关文章

/