偏最小二乘回归神经网络模型在爆破振动峰值速度预测中的应用

史秀志;武永猛;唐礼忠;黄宣东

振动与冲击 ›› 2013, Vol. 32 ›› Issue (12) : 45-49.

PDF(849 KB)
PDF(849 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (12) : 45-49.
论文

偏最小二乘回归神经网络模型在爆破振动峰值速度预测中的应用

  • 史秀志,武永猛,唐礼忠,黄宣东
作者信息 +

Application of neural network model with partial least-squares regression in prediction of peak velocity of blasting vibration

  • SHI Xiu-zhi,WU Yong-meng, TANG Li-zhong,HUANG Xuan-dong
Author information +
文章历史 +

摘要

神经网络方法是处理非线性问题的有力工具,但当输入变量较多,输入变量间存在的多重共线性性会使得网络的建模效率下降。偏最小二乘回归方法通过提取对因变量解释性较强的成分,能较好地克服变量间的多重共线性。将两种方法相结合,建立了爆破振动峰值速度的偏最小二乘回归BP神经网络预测模型。利用偏最小二乘法对影响爆破振动的因素进行分析,提取出3个新综合变量,使BP网络的输入层节点数目由9个减少到3个,简化了网络结构,提高了计算速度,增强了网络稳定性。分析结果表明,耦合模型的平均预测误差为7.62%,相较于传统的萨氏公式及标准的BP神经网络模型其预测精度有了明显提高。

Abstract

The neural network method is a powerful tool to solve the problem of nonlinearity,but when the input variables are very large,the multicollinearity among variables will lead low modeling efficiency.Partial least-squares regression(PLSR) method can extract compositions with better interpretation to the dependent variables,and it can preferably overcome the multicollinearity among variables. By combining the two methods, a BP neural network prediction model for peak velocity of blasting vibration based on PLSR was established. The affecting factors for blasting vibration were analyzed by means of PLSR,and three new synthesis variables were extracted. Since input layers of BP neural network were decreased from nine to three,the network structure is simpler,more efficient and more stable.The results show that the average prediction errors of coupled model is 7.62%,which is more accurate than Sadaovsk formula and normal BP neural network model.

关键词

爆破振速 / 多重共线性 / 偏最小二乘回归 / BP神经网络

Key words

blasting vibration velocity / multicollinearity / partial least-squares regression / BP neural network

引用本文

导出引用
史秀志;武永猛;唐礼忠;黄宣东. 偏最小二乘回归神经网络模型在爆破振动峰值速度预测中的应用[J]. 振动与冲击, 2013, 32(12): 45-49
SHI Xiu-zhi;WU Yong-meng;TANG Li-zhong;HUANG Xuan-dong. Application of neural network model with partial least-squares regression in prediction of peak velocity of blasting vibration[J]. Journal of Vibration and Shock, 2013, 32(12): 45-49

PDF(849 KB)

1037

Accesses

0

Citation

Detail

段落导航
相关文章

/