基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究

张星辉 康建设 高存明 曹端超 滕红智

振动与冲击 ›› 2013, Vol. 32 ›› Issue (15) : 20-25.

PDF(2541 KB)
PDF(2541 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (15) : 20-25.
论文

基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究

  • 张星辉1 康建设1 高存明2 曹端超1 滕红智3
作者信息 +

Gearbox state identification and remaining useful life prediction based on MoG-HMM

  • Xinghui Zhang1 Jianshe Kang1 Cunming Gao2 Duanchao Cao1 Hongzhi Teng3
Author information +
文章历史 +

摘要

提出了基于混合高斯隐马尔可夫模型的齿轮箱状态识别与剩余使用寿命预测新方法。建立了基于聚类评价指标的状态数优化方法,通过计算待识别特征向量的概率值来识别齿轮箱当前状态。在状态识别的基础上,提出了剩余使用寿命计算方法。最后,利用齿轮箱全寿命实验数据进行验证,结果表明,该方法可以有效的识别齿轮箱状态并实现了剩余使用寿命预测,平均预测正确率为90.94%,为齿轮箱的健康管理提供了科学依据。

Abstract

A new approach for state recognition and remaining useful life (RUL) prediction based on Mixture of Gaussians Hidden Markov Model (MoG-HMM) was presented. State number optimization method was established based on cluster validity measures. One can recognize the state through identifying the MoG-HMM that best fits the observations. Then, the RUL prediction method was presented at the recognition base. Finally, the data of gearbox’s full life cycle test was used to demonstrate the proposed methods. The results showed that the mean accuracy performance was 90.94%.

关键词

混合高斯隐马尔可夫模型 / 剩余使用寿命预测 / 状态识别

Key words

Mixture of Gaussians Hidden Markov Model / Remaining useful life prediction / State recognition

引用本文

导出引用
张星辉 康建设 高存明 曹端超 滕红智. 基于MoG-HMM的齿轮箱状态识别与剩余使用寿命预测研究[J]. 振动与冲击, 2013, 32(15): 20-25
Xinghui Zhang Jianshe Kang Cunming Gao Duanchao Cao Hongzhi Teng. Gearbox state identification and remaining useful life prediction based on MoG-HMM[J]. Journal of Vibration and Shock, 2013, 32(15): 20-25

PDF(2541 KB)

1097

Accesses

0

Citation

Detail

段落导航
相关文章

/