结合连续小波变换和多约束非负矩阵分解的故障特征提取方法

唐曦凌;梁霖;高慧中;罗爱玲

振动与冲击 ›› 2013, Vol. 32 ›› Issue (19) : 7-11.

PDF(1742 KB)
PDF(1742 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (19) : 7-11.
论文

结合连续小波变换和多约束非负矩阵分解的故障特征提取方法

  • 唐曦凌1,梁霖2,高慧中2,罗爱玲2
作者信息 +

Fault Feature Extraction Combining Continuous Wavelet Transform with Multiple Constraints Nonnegative Matrix Factorization

  • TANG Xiling1, LIANG Lin2, GAO Huizhong2, LUO Ailing2
Author information +
文章历史 +

摘要

为了在故障早期从信噪比较低的振动信号中提取故障特征,提出了一种结合小波变换和多约束非负矩阵分解振动信号特征提取方法。首先,采用最小小波熵测量提取出最优时频系数矩阵。然后,根据故障特征在系数矩阵中的表现规律,采用基于稀疏性和光滑性约束的非负矩阵分解算法对小波系数矩阵进行非线性降维,从而提取信噪比较高的故障特征。最后,通过仿真数据和实际数据对该方法进行了验证,结果表明该方法能够在时域中提取出微弱的故障特征,实现机械状态的早期故障诊断。

Abstract

In order to extract weak fault feature from vibration signals with noise, a method combining continuous wavelet transform with nonnegative matrix factorization with multiple constraints was put forward. Firstly, the continuous wavelet transform was adopted to transform the signal into time-frequency domain with the optimization of wavelet shape factor by wavelet entropy method. Secondly, the non-negative matrix factorization with sparsity and smoothness constraints was used to reduce the optimal coefficient matrix according to the fault characteristic shown by the matrix so as to extract fault feature with less noise. Finally, simulations and application data show that this approach is effectiveness of weak fault feature extraction and realizes the early fault diagnosis.

关键词

特征提取 / 连续小波变换 / 非负矩阵分解 / 故障诊断

Key words

Feature Extraction / Continuous Wavelet Transform / Nonnegative Matrix Factorization / Fault Diagnosis

引用本文

导出引用
唐曦凌;梁霖;高慧中;罗爱玲. 结合连续小波变换和多约束非负矩阵分解的故障特征提取方法[J]. 振动与冲击, 2013, 32(19): 7-11
TANG Xiling;LIANG Lin;GAO Huizhong;LUO Ailing. Fault Feature Extraction Combining Continuous Wavelet Transform with Multiple Constraints Nonnegative Matrix Factorization[J]. Journal of Vibration and Shock, 2013, 32(19): 7-11

PDF(1742 KB)

Accesses

Citation

Detail

段落导航
相关文章

/