基于复杂网络社团聚类的故障模式识别方法研究

陈安华 潘阳 蒋玲莉

振动与冲击 ›› 2013, Vol. 32 ›› Issue (20) : 129-133.

PDF(1348 KB)
PDF(1348 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (20) : 129-133.
论文

基于复杂网络社团聚类的故障模式识别方法研究

  • 陈安华 潘阳 蒋玲莉
作者信息 +

Failure pattern recognition method research based on complex network community clustering algorithm

  • Chen Anhua Pan Yang Jiang Lingli
Author information +
文章历史 +

摘要

复杂网络是近年兴起的一种新的理论,已迅速渗透到从自然科学到工程科学等多个领域。本文从复杂网络社团结构的本质特性出发,将故障样本抽象为网络节点,样本与样本之间的联系抽象为边,建立故障数据网络模型。利用复杂网络节点关联度的概念选取社团初始聚类中心,利用欧氏距离函数实现网络社团初始划分,设计社团区分准则函数,并引入模块性合并指标变化进行同类社团合并,最终实现准确的社团聚类与故障诊断。滚动轴承故障诊断实例验证了方法的有效性。

Abstract

Recently, the complex network has been the rise of a new theory, which has rapidly permeated from natural science to the engineering science and so on. From the essential characteristics of the complex network community structure, fault samples are abstracted into the network nodes and the connection between samples is abstracted into edge, then we can establish the network model of fault data. We can make use of the concept of complex network node correlation to select community initial clustering center and Euclidean distance function to realize network initial division, design community distinguish criterion function, introduce the changes of modularity index to integrate the similar communities, and finally realize the accurate community division and fault diagnosis. We can apply the complex network community clustering proposed in the paper to these fault types which are difficult to distinguish to realize accurate classification. The proposed method applied in the examples of rolling bearing fault diagnosis verify that this method has a higher fault recognition rate.

关键词

复杂网络 / 社团聚类 / 故障诊断 / 模式识别

Key words

Complex network / Community clustering / Fault diagnosis / Pattern recognition

引用本文

导出引用
陈安华 潘阳 蒋玲莉. 基于复杂网络社团聚类的故障模式识别方法研究[J]. 振动与冲击, 2013, 32(20): 129-133
Chen Anhua Pan Yang Jiang Lingli. Failure pattern recognition method research based on complex network community clustering algorithm [J]. Journal of Vibration and Shock, 2013, 32(20): 129-133

PDF(1348 KB)

Accesses

Citation

Detail

段落导航
相关文章

/