基于LMD-PCA-LSSVM的滚动轴承安全域估计和状态辨识方法

张媛;秦勇;邢宗义;贾利民;陈波

振动与冲击 ›› 2013, Vol. 32 ›› Issue (20) : 172-178.

PDF(2527 KB)
PDF(2527 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (20) : 172-178.
论文

基于LMD-PCA-LSSVM的滚动轴承安全域估计和状态辨识方法

  • 张媛1,2、秦勇2、邢宗义3、贾利民2、陈波1
作者信息 +

Safety region estimation and states identification of rolling bearings based on LMD-PCA-LSSVM method

  • ZHANG Yuan 1, QIN Yong 2, XING Zong-yi 3, JIA Li-min 2, CHEN Bo 1
Author information +
文章历史 +

摘要

本文将安全域的思想引入滚动轴承的状态监测中,综合利用局部均值分解(Local Mean Decomposition, LMD)、主成分分析(Principal Component Analysis, PCA)和最小二乘支持向量机(Least Square Support Vector Machine, LSSVM),进行了滚动轴承运行状态的安全域估计以及正常和各种故障状态的辨识。首先,按一定的时间间隔将采集正常及各种故障状态的振动数据进行分段,每段数据进行LMD后获得各乘积函数分量;其次,基于各段数据的乘积函数分量,利用PCA提取出每段数据的T2和SPE统计量控制限值作为滚动轴承的状态特征量;最后,利用二分类的LSSVM进行滚动轴承运行状态的安全域估计,利用多分类LSSVM进行滚动轴承的正常以及滚动体、内圈、外圈故障四种状态的辨识。试验结果显示安全域估计和多种状态辨识的准确率均较高,验证了本文方法的有效性。

Abstract

The idea of safety region estimation was introduced to state monitoring of rolling bearings, the safety region boundaries estimation and states identification of rolling bearings were carried out using a new method which is a combination of Local Mean Decomposition(LMD), principal component analysis (PCA) and least square support vector machine (LSSVM). Based on the collected vibration data of the rolling bearings under the four different states (normal, ball defect, inner race defect and outer race defect), the data was divided into a number of data pieces, and Product Functions (PFs) of each piece were got by LMD. And then, with the PFs, two statistical variables control limits as the state characteristics were calculated by PCA. The boundaries of safety region and identification results of the four states were obtained on two control limits data classification using two-classification LSSVM and multi-classification LSSVM respectively. Finally, the experiment results indicated that the accuracies of the safety region estimation and states identification are both satisfying, and shown that the LMD-PCA-LSSVM method is effective and feasible.

关键词

滚动轴承 / 状态监测 / 安全域 / 局部均值分解 / 主成分分析 / 最小二乘支持向量机

Key words

rolling bearings / state identification / safety region / LMD / PCA / LSSVM

引用本文

导出引用
张媛;秦勇;邢宗义;贾利民;陈波. 基于LMD-PCA-LSSVM的滚动轴承安全域估计和状态辨识方法[J]. 振动与冲击, 2013, 32(20): 172-178
ZHANG Yuan;QIN Yong;XING Zong-yi;JIA Li-min;CHEN Bo . Safety region estimation and states identification of rolling bearings based on LMD-PCA-LSSVM method[J]. Journal of Vibration and Shock, 2013, 32(20): 172-178

PDF(2527 KB)

Accesses

Citation

Detail

段落导航
相关文章

/