基于多尺度形态分解谱熵的电机轴承预测特征提取及退化状态评估

王 冰;李洪儒;许葆华

振动与冲击 ›› 2013, Vol. 32 ›› Issue (22) : 124-128.

PDF(1885 KB)
PDF(1885 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (22) : 124-128.
论文

基于多尺度形态分解谱熵的电机轴承预测特征提取及退化状态评估

  • 王 冰,李洪儒,许葆华
作者信息 +

Motor bearing forecast feature extracting and degradation status identification based on multi scale morphological decomposition spectrum entropy

  • WANG Bing,LI Hong-ru,XU Bao-hua
Author information +
文章历史 +

摘要

由于预测特征提取与退化状态评估直接关系故障预测可信性,结合数学形态学与信息熵理论,针对电机滚动轴承,提出基于多尺度形态分解谱熵的预测特征提取方法,用灰色关联分析对退化状态进行评估。对不同损伤程度轴承振动信号进行多尺度形态分解,分别计算其在不同尺度域内的复杂性度量能谱熵、奇异谱熵,以其作为预测特征向量。建立标准退化模式矩阵,对待检测样本信号特征向量与标准模式进行灰色关联分析,据关联度大小对样本信号退化状态进行评估。并仿真与实例数据验证该方法对电机轴承退化状态评估的有效性。

Abstract

How to extract forecast feature and distinguish degeneration status is the key problem in fault forecasting and it will influence its reliability. Combining mathematical morphology and information entropy, a method for motor bearing forecast feature extraction based on multi scale morphological decomposition spectrum entropy was proposed in the paper. On this basis, estimating the degeneration status for bearing combining with gray degree of association. Executing multi scale morphological decomposition for bearing vibration signal on different damage degree, computing its complexity indicator in different scale domain, power spectral entropy and singular spectral entropy. Take the two indicators as forecasting character vector. On this basis, standard degeneration mode matrix was obtained, processing grey relational analysis between sample vector and standard mode, distinguish the degenerate status according the value of grey relevancy. The effectiveness of this process on motor bearing degeneration status identification was verified via emulation and living example.


关键词

电机 / 轴承 / 性能退化 / 多尺度形态分解 / 谱熵 / 灰色关联分析

Key words

motor / bearing / performance degenerate / multi scale morphological decomposition / spectrum entropy / grey relational analysis

引用本文

导出引用
王 冰;李洪儒;许葆华. 基于多尺度形态分解谱熵的电机轴承预测特征提取及退化状态评估[J]. 振动与冲击, 2013, 32(22): 124-128
WANG Bing;LI Hong-ru;XU Bao-hua. Motor bearing forecast feature extracting and degradation status identification based on multi scale morphological decomposition spectrum entropy[J]. Journal of Vibration and Shock, 2013, 32(22): 124-128

PDF(1885 KB)

1052

Accesses

0

Citation

Detail

段落导航
相关文章

/