基于支持向量机的卫星动力学多目标优化

袁 野;陈昌亚;王德禹

振动与冲击 ›› 2013, Vol. 32 ›› Issue (22) : 189-192.

PDF(1124 KB)
PDF(1124 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (22) : 189-192.
论文

基于支持向量机的卫星动力学多目标优化

  • 袁 野1,陈昌亚2,王德禹1
作者信息 +

Multi-objective dynamic optimization of satellite based on support vector machine

  • YUAN Ye1,CHEN Chang-ya2,WANG De-yu1
Author information +
文章历史 +

摘要

针对实际工程中优化大规模结构耗时长问题,采用支持向量机与遗传算法相结合的优化方法。基于支持向量机建立结构近似模型,代替耗时长的有限元分析并应用遗传算法进行结构优化,形成省时、精度高、适应性强的优化方法。以某卫星整星结构动力学多目标优化为例,建立支持向量机近似模型模拟卫星蜂窝板、碳纤维框架结构设计参数与加速度频率响应、应力响应等非线性映射关系,选用二阶响应面模型作对比。计算结果表明,支持向量机与遗传算法组合优化方法不仅能降低耗时成本,且具精度良好。

Abstract

Aiming at the time-consuming problem of large-scale structure optimization, a method (SVM-GA) which combines Support Vector Machine (SVM) and Genetic Algorithm (GA) is proposed. In this method, approximation model is constructed based on SVM to substitute the time-consuming FEA. GA is applied to optimization. The multi-objective structural dynamics optimization of a satellite is adopted as an example to illustrate the effectiveness of the SVM-GA method. Approximation model based on SVM is constructed to simulate the nonlinear mapping relation between structure design parameters of honeycomb plate and carbon fiber frame and frequency response of acceleration and stress. Second order response surface is constructed as a contrast. Results show that the SVM-GA method can reduce the time consumption of optimization and have a good precision.


关键词

支持向量机 / 近似模型 / 遗传算法 / 优化设计

Key words

support vector machine / approximation model / genetic algorithm / optimization design

引用本文

导出引用
袁 野;陈昌亚;王德禹. 基于支持向量机的卫星动力学多目标优化[J]. 振动与冲击, 2013, 32(22): 189-192
YUAN Ye;CHEN Chang-ya;WANG De-yu. Multi-objective dynamic optimization of satellite based on support vector machine[J]. Journal of Vibration and Shock, 2013, 32(22): 189-192

PDF(1124 KB)

889

Accesses

0

Citation

Detail

段落导航
相关文章

/