优化KNNC算法在滚动轴承故障模式识别中应用

胡 智;段礼祥;张来斌

振动与冲击 ›› 2013, Vol. 32 ›› Issue (22) : 84-87.

PDF(1124 KB)
PDF(1124 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (22) : 84-87.
论文

优化KNNC算法在滚动轴承故障模式识别中应用

  • 胡 智,段礼祥,张来斌
作者信息 +

Application of improved KNNC method in fault pattern recognition of rolling bearing

  • HU Zhi,DUAN Li-xiang,ZHANG Lai-bin
Author information +
文章历史 +

摘要

为有效提高滚动轴承故障诊断率,正确识别不同故障类型,提出基于优化K-最近邻域分类器(K-Nearest Neighbor Classifier,KNNC)的轴承故障模式识别方法。分别求得滚动轴承训练样本与测试样本的振动特征指标,构建样本特征集。为加快分类速度,剔除不良样本干扰,利用K-均值聚类算法对样本进行优化精简,并将所得若干聚类中心作为新的约简训练集。据新训练集进行KNNC分析,实现模式识别。结果表明:该方法能快速、有效识别出滚动轴承4种不同故障模式,识别正确率明显提高。

Abstract

An important reason that caused mechanical equipment failure is the rolling bearing fault. In order to improve the correct diagnosis rate of rolling bearing and recognize different faults effectively, a novel method of fault pattern recognition based on improved KNNC (K-nearest neighbor classifier) is presented. Firstly, the vibration feature index of training samples and test sample are calculated separately. So, the feature set of samples is constructed entirely. To accelerate classification speed of KNNC and eliminate the influence of bad samples, K-means clustering algorithm is used to optimize the training samples, and the obtained clustering centers are regarded as a new training set. At last, the pattern recognition can be realized by KNNC according to the new training set. Application in Rolling bearing experiment shows that the improved method can effectively and quickly separate the 4 different kinds of bearing fault pattern, with higher recognition accuracy.



关键词

KNNC / K-均值聚类算法 / 滚动轴承 / 故障诊断 / 模式识别

Key words

KNNC / K-means clustering algorithm / rolling bearings / fault diagnosis / pattern recognition

引用本文

导出引用
胡 智;段礼祥;张来斌. 优化KNNC算法在滚动轴承故障模式识别中应用[J]. 振动与冲击, 2013, 32(22): 84-87
HU Zhi;DUAN Li-xiang;ZHANG Lai-bin. Application of improved KNNC method in fault pattern recognition of rolling bearing[J]. Journal of Vibration and Shock, 2013, 32(22): 84-87

PDF(1124 KB)

811

Accesses

0

Citation

Detail

段落导航
相关文章

/