基于多重分形与奇异值分解的往复压缩机故障特征提取方法研究

赵海洋;徐敏强 王金东

振动与冲击 ›› 2013, Vol. 32 ›› Issue (23) : 105-109.

PDF(1259 KB)
PDF(1259 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (23) : 105-109.
论文

基于多重分形与奇异值分解的往复压缩机故障特征提取方法研究

  • 赵海洋1,2 徐敏强1 王金东2
作者信息 +

A Study of Fault Feature Extraction Based on Multifractal and SingularityValue Decomposition for Reciprocating Compressor

  • Zhao Hai-yang 1,2, Xu Min-qiang 1 , Wang Jin-dong 2
Author information +
文章历史 +

摘要

针对往复压缩机故障信息干扰耦合,振动信号呈现复杂非线性、非平稳等特性,提出一种基于多重分形与奇异值分解的多传感器故障特征提取方法。广义分形维数能够更精细的刻画信号的局部尺度行为,通过对多传感器信号进行多重分形分析,构成广义分形维数初始特征矩阵,应用奇异值分解法进行数据压缩,提取矩阵特征值作为故障特征向量。以往复压缩机传动机构为研究对象,通过振动信号提取不同位置轴承间隙大故障的特征向量,利用支持向量机作为分类器,与单一传感器多重分形法和多传感器单重分形法进行对比分析,验证了该方法的有效性。

Abstract

This paper presents a fault feature extraction method based on multifractal and singularity value decomposition for multi-sensor, according to the interference and coupling of fault information and complex non-linear, non-stationary characteristics of the vibration signal in reciprocating compressor. The generalized fractal dimension can characterize local scale behavior of signal more appropriately, so an initial feature matrix was built by calculating the generalized fractal dimension of multi-sensor signal. The matrix was compressed by singular value decomposition method, and the eigenvalues of matrix were taken as feature vectors. Taken reciprocating compressor transmission mechanism as research object, feature vectors of bearing clearance faults on different position were extracted from vibration signal. Support vector machine was established as pattern classifier to identify faults. Compared with results of single sensor multifractal method and multi-sensor fractal method, the validity of this method is proved.



关键词

多重分形 / 奇异值分解 / 间隙故障 / 支持向量机 / 往复压缩机 / 故障诊断

Key words

Multifractal / Singularity value decomposition / Clearance fault / Support vector machine / Reciprocating compressor / Fault diagnosis

引用本文

导出引用
赵海洋;徐敏强 王金东. 基于多重分形与奇异值分解的往复压缩机故障特征提取方法研究[J]. 振动与冲击, 2013, 32(23): 105-109
Zhao Hai-yang;Xu Min-qiang ;Wang Jin-dong . A Study of Fault Feature Extraction Based on Multifractal and SingularityValue Decomposition for Reciprocating Compressor[J]. Journal of Vibration and Shock, 2013, 32(23): 105-109

PDF(1259 KB)

Accesses

Citation

Detail

段落导航
相关文章

/