基于各向异性分形几何理论的摩擦非线性数学模型

田红亮;赵春华;方子帆;朱大林;秦红玲;刘芙蓉;钟先友

振动与冲击 ›› 2013, Vol. 32 ›› Issue (23) : 135-144.

PDF(2774 KB)
PDF(2774 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (23) : 135-144.
论文

基于各向异性分形几何理论的摩擦非线性数学模型

  • 田红亮,赵春华,方子帆,朱大林,秦红玲,刘芙蓉,钟先友
作者信息 +

Mathematical model of nonlinear friction orienting to anisotropic fractal geometric theory

  • TIAN Hong-liang,ZHAO Chun-hua,FANG Zi-fan,ZHU Da-lin,QIN Hong-ling,LIU Fu-rong,ZHONG Xian-you
Author information +
文章历史 +

摘要

基于各向异性分形几何理论,推导接触面法向总载荷、最大静摩擦力、静摩擦系数的严格解析解。根据中间自变量接触率,建立接触面静摩擦非线性的数学模型。数值模拟的计算结果表明:静摩擦系数随着法向总载荷或材料性能参数的增加而微向上凸弧式增加,但随着分形粗糙度的减小而微向上凸弧式增大;当分形维数较小时,静摩擦系数随着分形维数的增大而增大;但当分形维数较大时,静摩擦系数随着分形维数的增大而变小;在绝对刻度坐标系统下,法向总载荷和最大静摩擦力近似表现出线性正比例的关系。

Abstract

The exact analytical formulas of contact surface’s normal total load, maximum static friction force and static friction coefficient were deduced from the anisotropic fractal geometric theory. The mathematical model of contact surface’s nonlinear static friction was set up adopting the medial independent variable named contact ratio. The calculable results of numerical simulation show that the static friction coefficient micro upwards protrusively increases with the increasing of normal total load or material property parameter, but it micro upwards protrusively adds when the fractal roughness decreases. When the fractal dimension becomes lower, the static friction coefficient increases as the fractal dimension increases; whereas, the fractal dimension becomes higher, the static friction coefficient reduces as the fractal dimension ascends. The maximum static friction force is approximately proportional to the normal total load on an absolute scale coordinate system.



关键词

各向异性 / 分形几何 / 摩擦建模 / 最大静摩擦力 / 静摩擦系数

Key words

anisotropic / fractal geometry / friction modeling / maximum static friction force / static friction coefficient

引用本文

导出引用
田红亮;赵春华;方子帆;朱大林;秦红玲;刘芙蓉;钟先友. 基于各向异性分形几何理论的摩擦非线性数学模型[J]. 振动与冲击, 2013, 32(23): 135-144
TIAN Hong-liang;ZHAO Chun-hua;FANG Zi-fan;ZHU Da-lin;QIN Hong-ling;LIU Fu-rong;ZHONG Xian-you. Mathematical model of nonlinear friction orienting to anisotropic fractal geometric theory[J]. Journal of Vibration and Shock, 2013, 32(23): 135-144

PDF(2774 KB)

1531

Accesses

0

Citation

Detail

段落导航
相关文章

/