一种求非线性振动系统周期解的切比雪夫级数方法

周薇 韩景龙 陈全龙

振动与冲击 ›› 2013, Vol. 32 ›› Issue (24) : 1-5.

PDF(1828 KB)
PDF(1828 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (24) : 1-5.
论文

一种求非线性振动系统周期解的切比雪夫级数方法

  • 周薇 韩景龙 陈全龙
作者信息 +

A Chebyshev series method for calculating the periodic solution of nonlinear vibration systems

  • ZHOU Wei HAN Jing-long CHEN Quan-long
Author information +
文章历史 +

摘要

将切比雪夫级数理论和非线性优化算法结合,提出了一种求非线性振动系统周期解的方法。本方法将状态矢量中未知切比雪夫系数的求解,转化为对主周期上系统残差求最小值的无约束最优化问题,计算出了具有较高精度的切比雪夫级数周期解。所得周期解可通过积分运算直接求得系统的Floquet转移矩阵,从而分析周期解的稳定性。最后,以Duffing系统方程和直升机旋翼系统运动方程为例,验证了本方法正确、有效,也证明了将切比雪夫级数理论引入直升机气动弹性响应与稳定性研究正确可行。

Abstract

Combined with the Chebyshev series theory and nonlinear optimization algorithm, a method is proposed to calculate the periodic solution of nonlinear vibration systems. The method transforms solving the unknown Chebyshev coefficients of the state vector into the optimization problem on solving the minimum value of residual over one primary period, and a high precision Chebyshev series periodic solution is obtained. The Floquet transition matrix can be calculated by periodic-solution integral operation. Then the stability of periodic solution can be analyzed. At last, two examples, namely Duffing equation and helicopter rotor motion equations, are proposed to demonstrate that the method is correct and effective. The examples also prove that introducing the Chebyshev series theory into the helicopter aeroelastic response and stability study is accuracy and feasible.


关键词

非线性振动 / 切比雪夫级数 / 解析周期解 / 优化方法 / 稳定性

Key words

nonlinear vibration / Chebyshev series / analytic periodic solution / optimization method / stability

引用本文

导出引用
周薇 韩景龙 陈全龙. 一种求非线性振动系统周期解的切比雪夫级数方法[J]. 振动与冲击, 2013, 32(24): 1-5
ZHOU Wei HAN Jing-long CHEN Quan-long. A Chebyshev series method for calculating the periodic solution of nonlinear vibration systems[J]. Journal of Vibration and Shock, 2013, 32(24): 1-5

PDF(1828 KB)

810

Accesses

0

Citation

Detail

段落导航
相关文章

/