基于振动图像纹理特征识别的轴承故障程度诊断方法研究

关贞珍;郑海起;叶明慧

振动与冲击 ›› 2013, Vol. 32 ›› Issue (5) : 127-131.

PDF(2342 KB)
PDF(2342 KB)
振动与冲击 ›› 2013, Vol. 32 ›› Issue (5) : 127-131.
论文

基于振动图像纹理特征识别的轴承故障程度诊断方法研究

  • 关贞珍,郑海起,叶明慧
作者信息 +

Research fault severity asessment for bearing based on vibration image

  • GUAN Zhen-zhen,ZHENG Hai-qi,YE Ming-hui
Author information +
文章历史 +

摘要

针对轴承故障诊断中故障分类研究多,故障程度研究少,振动图像信息丰富得不到充分利用问题,提出利用振动图像纹理特征识别技术进行轴承故障程度诊断方法。该方法先对轴承振动响应信号进行EMD-形态差值滤波处理,后将滤波后信号转换为双谱等高线图,利用灰度三角共生矩阵得到双谱图形纹理特征,应用主成份分析法从纹理特征参数中提取轴承故障程度特征参量,用支持向量机进行模式识别。实验结果表明该方法能有效区别轴承外圈、内圈及内外圈的故障严重程度,可为旋转机械故障程度诊断提供新方法。

Abstract

Aiming at problems that the research of fault classification on bearing is more but the research of fault degree identification is litter, the information of vibration image is abundance but it has not been used fully, the method of fault degree identification of bearing using vibration image is proposed. The original vibration signals are de-noised with EMD- morphology filter, then is converted to bispectrum contour image, after it calculated using gray-level co-occurrence matrix and principal component analysis, the fault degree character parameters are acquired. At last the fault degree is diagnosed by support vector machine. The results of experiments show that this method can diagnose the fault degree of bearing effectively, and it provides a new diagnosis approach for the fault degree of rotating machinery.

关键词

轴承 / 故障诊断 / 故障程度 / 振动图像

Key words

Bearing / Fault diagnosis / fault degree / vibration image

引用本文

导出引用
关贞珍;郑海起;叶明慧. 基于振动图像纹理特征识别的轴承故障程度诊断方法研究[J]. 振动与冲击, 2013, 32(5): 127-131
GUAN Zhen-zhen;ZHENG Hai-qi;YE Ming-hui . Research fault severity asessment for bearing based on vibration image[J]. Journal of Vibration and Shock, 2013, 32(5): 127-131

PDF(2342 KB)

Accesses

Citation

Detail

段落导航
相关文章

/