[1] 钟秉林,黄仁. 机械故障诊断学[M]. 北京:机械工业出版社,2007:1-16.
ZHONG Bing-lin, HUANG Ren. Introduction to machine fault diagnosis[M]. Beijing: China Machine Press, 2007:1-16.
[2] 姚培,王仲生,姜洪开等. 局部保形映射和AdaBoost方法在滚动轴承故障诊断中的应用[J]. 振动与冲击,2013,32(5):144-148.
YAO Pei, WANG Zhong-sheng, JIANG Hong-kai, et al. Roller bearing fault diagnosis based on locality preserving project [J]. Journal of Vibration and Shock, 2013, 32(5): 144-148.
[3] Candès E J, Charlton P R, Helgason H. Detecting highly oscillatory signal by chirplet path pursuit[J]. Applied and Computational Harmonic Analysis, 2008, 24(1): 14-40.
[4] 姜锐红,刘树林,刘颖慧等. 基于CPWP混合原子分解的滚动轴承故障诊断方法研究[J]. 振动与冲击,2013,32(23):48-51.
JIANG Rui-hong, LIU Shu-lin, LIU Ying-hui, et al. Rolling bearing fault diagnosis based on CPWP merged atomic decomposition [J]. Journal of Vibration and Shock, 2013, 32(23): 48-51.
[5] Ocak H, Loparo K A, Discenzo F M. Online tracking of bearing wear using wavelet packet decomposition and probabilistic modeling: a method for bearing prognostics [J]. Journal of Sound and Vibration, 2007, 302(4/5): 951-961.
[6] 罗颂荣,程军圣,杨宇. 基于本征时间尺度分解和变量预测模型模式识别的机械故障诊断[J]. 振动与冲击,2013,32(13):43-48.
LUO Song-rong, CHENG Jun-sheng, YANG Yu. Machine fault diagnosis method using ITD and variable predictive model-based class discrimination [J]. Journal of Vibration and Shock, 2013, 32(13): 43-48.
[7] 胥永刚,孟志鹏,陆明. 基于双树复小波包变换和SVM的滚动轴承故障诊断方法[J]. 航空动力学报,2014,29(1):67-73.
XU Yong-gang, MENG Zhi-peng, LU Ming. Fault diagnosis method of rolling bearing based on dual-tree complex wavelet packet transform and SVM [J]. Journal of Aerospace Power, 2014, 29(1): 67-73.
[8] Vapnik V N. Statistical learning theory[M]. New York: Springer, 1998.
[9] 朱波,刘飞,李顺江.基于优化有向无环图支持向量机的多变量过程均值异常识别[J]. 计算机集成制造系统,2013,19(3):549-568.
ZHU Bo, LIU Fei, LI Shun-jiang. Mean abnormality identification in multivariate process based on optimized directed acyclic graph support vector machine [J]. Computer Integrated Manufacturing Systems, 2013, 19(3): 549-568.
[10] 陈世杰,连可,王厚军. 遗传算法优化的SVM模拟电路故障诊断方法[J]. 电机科技大学学报,2009,38(4):553-558.
CHEN Shi-jie, LIAN Ke, WANG Hou-jun. Method for analog circuit fault diagnosis based on GA optimized SVM [J]. Journal of University of Electronic Science and Technology of China, 2009, 38(4): 553-558.
[11] 陈安华,潘阳,蒋玲莉. 基于复杂网络社团聚类的故障模式识别方法研究[J]. 振动与冲击,2013,32(20):129-133.
CHEN An-hua, PAN Yang, JIANG Ling-li. Fault pattern recognition method based on complex network community clustering [J]. Journal of Vibration and Shock, 2013, 32(20): 129-133.
[12] 杜海峰,王娜,张进花等. 基于复杂网络的故障诊断策略[J]. 机械工程学报,2010,46(3):90-96.
DU Hai-feng, WANG Na, ZHANG Jin-hua, et al. Fault diagnosis strategy based on complex network analysis [J]. Journal of Mechanical Engineering, 2010, 46(3): 90-96.
[13] Newman M E J. Detecting community structure in network [J]. Eur. Phys. J. B, 2004, 38(2):321-330.
[14] 刘卫兵,李志农,蒋静. 基于局域均值分解的滚动轴承故障诊断方法[J]. 轴承,2009(9):48-52.
LIU Weibing, LI Zhinong, JIANG Jing. Fault diagnosis method of rolling bearing based on local mean decomposition [J]. Bearing, 2009(9): 48-52.
[15] Smith J S. The local mean decomposition and its application to EEG perception data [J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
[16] 唐贵基,王晓龙. 基于局部均值分解和切片双谱的滚动轴承故障诊断研究[J]. 振动与冲击,2013,32(24):83-88.
TANG Gui-ji, WANG Xiao-long. Fault diagnosis of roller bearing based on local mean decomposition and slice bispectrum [J]. Journal of Vibration and Shock, 2013, 32(24): 83-88.
[17] http://www.eecs.cwru.edu/laboratory/bearing, Bearing Data Center Website, Case Western Reserve University