分析了反向扩孔气动冲击器工作原理,并对活塞进行运动和动力学分析,建立活塞运动的微分方程组;对工作过程中冲击器内三个气腔的容积和压力变化规律进行分析,建立活塞在不同运动阶段期间三个气腔的容积和压力变化方程组,以及活塞在不同运动阶段期间三个气腔间气体质量交换的流量方程组。通过上述研究建立反向扩孔气动冲击器工作过程的数学模型和仿真方法。研究冲击器的性能参数与结构参数之间的理论关系,在此基础上建立冲击器的优化设计方法,为反向扩孔气动冲击器的应用提供理论支持。
Abstract
The piston's movement differential equations were built based on the analyzation of the working principles of reverse countboring pneumatic impactor as well as kinematics and dynamics of the piston. Analyzed the change rule of three air chambers' volume and pressure of impactor in the working process. Volume and pressure change equations of three air chambers and flow equations of gaseous mass exchange among the three chamber were built during different moving stages of the piston. Based on the above study, set up mathematical model and simulation method of the working process of reverse counterboring pneumatic impactor. Study theoretical relationship between performance parameters and structure parameters of impactor. Based on this, establish optimization design method of impactor providing theoretical support for the application of reverse counterboring pneumatic impactor.
关键词
反向扩孔气动冲击器 /
数学模型 /
结构 /
性能 /
优化
{{custom_keyword}} /
Key words
reverse counterboring pneumatic impactor /
mathematical model /
structure /
performance /
optimize
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 颜纯文. 我国非开挖行业现状与展望[J]. 探矿工程: 岩土钻掘工程, 2010 (010): 56-60.
Yan Chun-wen. The present situation and prospect of trenchless industry in country. [J]. Exploration engineering: Drilling & Tunneling Engineering, 2010 (010): 56-60.
[2] 颜纯文. 持续发展的非开挖技术[J].地质装备,2005(5):3-9.
Yan Chun-wen. Trenchless technology of sustainable development. [J]. Equipment for Geotechnical Engineering,2005(5):3-9.
[3] Ariaratnam S T, Chan W, Choi D. Utilization of trenchless construction methods in mainland china to sustain urban infrastructure[J]. Practice Periodical on Structural Design and Construction, 2006, 11(3): 134-141.
[4] Ariaratnam S T, Piratla K, Cohen A. Field assessment of a Vacuum Microtunneling (VMT) system for on-grade pipeline installations[J]. Tunnelling and Underground Space Technology, 2014, 39: 58-65.
[5] Hajji A M. Sensitivity Analysis and Productivity Study of Directpipe Technology by using Simulation[J]. Procedia Engineering, 2013, 54: 591-603.
[6] Li J, Zhou M, Si Y N, et al. Trenchless Repair Technology and Application of Urban Sewer System[J]. Applied Mechanics and Materials, 2014, 470: 992-997.
[7] Ryan P K, Finney A J. Pipe Materials and Joint Selection for Trenchless Construction[J]. Bridges, 2014, 10: 928 - 939.
[8] Drolet L F, Cabiness L S, Swartz J T, et al. Tunneling and trenchless technology key to Charleston's infrastructure[J]. Mining Engineering, 2013, 65(3): S56-S61.
[9] 李彦明. 冲击-回转钻进工艺在超硬岩层中的应用[J]. 煤矿机械, 2011, 32(3): 210-212.
Li Yan-ming. Application of Impact-rotary Drilling Technology in Superhard Rock[J]. COAL MINE MACHINERY2011, 32(3):210-212.
[10] 王四一, 孙友宏, 王清岩, 赵研,赵江鹏,王传留,张武. 正反气动冲击机构系统仿真分析及结构优化[J]. 吉林大学学报 (地球科学版), 2011, 1
Wang Si-yi, Sun You-hong, Wang Qing-yan, Zhao Yan,Zhao Jiang-peng,Wang Chuan-liu,Zhang Wu. System Simulation and Structure Optimization of Reversible Pneumatic Impact Mechanism[J]. Journal of Jilin University(Earth Science Edition) , 2011, 41: 243-247.
[11 ] 江涛, 李锻能. 基于仿真计算的气动潜孔冲击器性能分析 [J]. 机床与液压, 2010 (3): 101-103.
Jiang Tao, Li Duan-neng. Performance Analysis for Pneumatic Down-the-hole Hammer with Simulation Computation J]. Machine Tool & Hydraulics, 2010 (3): 101-103.
[12] 杨国忠. 气动冲击设备及其设计[M]. 机械工业出版社, 1991.
Yang Guo-zhong. Pneumatic impact device and its design[M]. China Machine Press,1991
[13] 薛定宇, 陈阳泉. 基于 MATLAB/Simulink 的系统仿真技术与应用[M]. 清华大学出版社, 2004.
Xue Ding-yu, Chen Yang-quan. Systematic simulation technology and application based on MATLAB/Simulink[M]. Tsinghua University Press,2004.
[14] 赵松年,佟杰新,卢秀春.现代设计方法[M]. 机械工业出版社,2011.
Zhao Song-nian, Tong Jie-xin, Lu Xiu-chun. Modern Design Method[M]. China Machine Press,2011
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}