基于变参数域和短时高斯线性调频基的自适应信号分解算法

郭剑峰1,2,刘金朝2,王卫东2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 133-139.

PDF(1934 KB)
PDF(1934 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 133-139.
论文

基于变参数域和短时高斯线性调频基的自适应信号分解算法

  • 郭剑峰1,2,刘金朝2,王卫东2
作者信息 +

Change Parameters Domain and Short Time Adaptive Gaussian Chirplet  Signal Decomposition Algorithm

  • Guo Jian-feng1,2  Liu Jin-zhao2  Wang Wei-dong2
Author information +
文章历史 +

摘要

基于高斯线性调频基的参数化时频分析方法由于具有很高的时域和频域分辨能力,而被广泛应用于非线性非稳态信号的分解和特征提取中,但其巨大的计算量常常让工程人员望而生畏。因此结合变参数域和短时傅立叶变换的方法提出了一种改进的短时高斯线性调频基自适应信号分解算法,将四参数优化问题转化成窄带范围的两参数优化问题,提高了参数化时频分析的时效性。利用改进算法对四原子组合的非线性解析信号和动检列车轴箱振动加速度信号进行分解,结果表明该方法能有效消除交叉项干扰,时频分辨率高,而且具有计算量小,速度快的优点,对分析动检列车轴箱振动与轮轨短波冲击有实际意义。

Abstract

On parametric time-frequency analysis method based on Gaussian chirplet function has the best time-frequency resolution. It is widely used in non-linear and non-stationary signal decomposition and feature extraction. But it has a large amount of computation. A reformed short time Gaussian chirplet signal decomposition algorithm based on change parameters domain method and short time Fourier transform (STFT) is proposed. It changes four parameters optimize problem to two parameters in a narrow range and improve the efficiency of computation. Using this reformed algorithm decomposes a four atoms non-linear analytic signal and high speed comprehensive inspection train’s axle box vibration acceleration signal, the result shows this algorithm can avoid the cross-term’s interferer and computes very fast. It can be applied to analyze the vibration of the axle box and wheel-rail shortwave shock.

关键词

变参数域 / 短时傅立叶变换 / 高斯线性调频基 / 自适应分解 / 轴箱振动

Key words

change parameters domain / short time Fourier transform / Gaussian chirplet function / adaptive decomposition / axle box vibration

引用本文

导出引用
郭剑峰1,2,刘金朝2,王卫东2. 基于变参数域和短时高斯线性调频基的自适应信号分解算法[J]. 振动与冲击, 2015, 34(12): 133-139
Guo Jian-feng1,2 Liu Jin-zhao2 Wang Wei-dong2. Change Parameters Domain and Short Time Adaptive Gaussian Chirplet  Signal Decomposition Algorithm[J]. Journal of Vibration and Shock, 2015, 34(12): 133-139

参考文献

[1] Abed M, Belouchrani A, Cheriet M, et al. Time-frequency distributions based on compact support kernels: properties and performance evaluation[J]. Signal Processing, IEEE Transactions on, 2012, 60(6): 2814-2827.
[2] Allen J. Short Time Spectral Analysis, Synthesis and Modification by Discrete Fourier Transform[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing. 1977, 25 (3): 235–238.
[3] Boashash B, O'shea P. Use of the cross Wigner-Ville distribution for estimation of instantaneous frequency[J]. Signal Processing, IEEE Transactions on, 1993, 41(3): 1439-1445.
[4] 彭志科,何永勇,褚福磊等.小波尺度谱在振动信号分析中的应用研究[J].机械工程学报,2002,38(3):125.
Using Wavelet Scalogram for Vibration Signals anaylsis[J]. ChineseJournal of Mechanical Engineering,2002,38(3):125.
[5] Huang N E, Wu Z. A review on Hilbert-Huang transform: Method and its applications to geophysical studies[J]. Reviews of Geophysics, 2008, 46(2): RG2006.
[6] USP Melia,M Vallverd, et al. Choi-Williams Distribution to Describe Coding and Non-coding Regions in Primary Transcript Pre-mRNA [J]. Journal of Medical and Biological Engineering, 2013,33(5): 504-512.
[7] QIAN S, CHEN D. Signal representation using adaptive normalized Gaussian functions [J]. Signal Processing,1994, 36(1):1-11.
[8] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries[J].IEEE Transactions on Signal Processing, 1993,41(12):3397-3415.
[9] Mann S, Haykin S. The Chirplet transform: Physical considerations[J]. IEEE Trans Signal Processing. 1995,43(11):2745-2761.
[10] Yin Q, Qian S, Feng A. A fast refinement for adaptive gaussian chirplet decomposition[J]. Signal Processing, IEEE Transactions on, 2002,50(6):1298-1306.
[11] 吕贵洲,何强,魏震生等.基于优化初值选择的自适应高斯包络线性调频基信号分解[J].信号处理, 2006,22(4):506-510.
 Lv G, He Q, Wei Z. Optimized Initial-Adaptive Gaussian Chirplet Signal Decomposition[J]. Signal Processing, 2006, 4: 506-510.
[12] 尚朝轩,罗贤全,何强等.短时高斯包络线性调频基自适应信号分解算法[J].信号处理, 2008,24(6):917-922.
Shang C, Luo X,He Q. Short Time-Adaptive Gaussian Chirplet Signal Decomposition[J]. Signal Processing, 2008,24(6):917-922.
[13] 方杨,彭志科,孟光等.一种新的估计多项式相位信号瞬时频率的参数化时频分析方法[J].噪声与振动控制, 2012, 32(3): 7-11.
A New Parametric Time-frequency Analysis Method for Instantaneous Frequency Estimation of Polynomial Phase Signal[J]. Noise and Vibraiton Control, 2012, 32(3): 7-11.

PDF(1934 KB)

Accesses

Citation

Detail

段落导航
相关文章

/