钢储罐常用于液化天然气、石油等易燃易爆物的储存,一旦起火爆炸,短时间内将产生极大的爆炸冲击波,造成储罐严重破坏并带来灾难性后果。爆炸冲击荷载的合理确定是钢储罐爆炸破坏分析与安全设计的重要基础。本文利用计算流体动力学FLUENT软件,基于 湍流模型和EDC燃烧模型,建立了能够模拟储罐内部爆炸流场变化情况的CFD模型,获得了特定位置处的超压时程,与TNT当量模型相比其模拟结果更接近罐内可燃气体爆炸的实际情况。本文进一步考察了储罐高径比、可燃气体浓度与种类以及初始压力等因素对爆炸冲击荷载的影响。研究表明:储罐高径比越大、罐内初始压力越大、可燃气体活性越高、越接近化学计量比浓度时,气体燃烧反应速度越快,爆炸冲击荷载越大。
Abstract
Steel tanks are widely used for the storage of liquefied natural gas, petroleum and other flammable explosive substance. The detonation of these explosives generates high intensity shock wave within a short time, which will cause serious damage to storage tanks and bring catastrophic results. A rational evaluation of the explosion loading is the foundation for structure failure analysis and safety designing of tanks. CFD model is built up based on turbulence model and EDC combustion model by the use of computational fluid dynamics software Fluent, which can simulate the changes of explosion flow field in tanks and obtain the overpressure time history of typical position unites. Compared with TNT equivalent method, the result of CFD model is closer to the actual situation of flammable gas explosion in tanks. Furthermore, influences of height-to-diameter ratio, concentration and species of flammable gas and initial pressure are taking into account. It is shown that, the gas reaction rate and explosion loading enhance along with the increase of height-to-diameter ratio, initial pressure and activity of flammable gas. Moreover, a stoichiometric concentration also will cause a higher explosion pressure and gas reaction rate.
关键词
钢储罐 /
可燃气体 /
爆炸冲击荷载 /
超压 /
CFD
{{custom_keyword}} /
Key words
steel tanks /
flammable gas /
explosion loading /
overpressure /
CFD
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Wharton R K, Formby S A, Merrifield R. Airblast TNT equivalence for a range of commercial blasting explosives[J]. Journal of Hazardous Materials, 2000, 79(1-2): 31-39.
[2] 高建丰,杜扬,蒋新生等. 模拟油罐油气混合物爆炸实验与数值仿真研究[J]. 后勤工程学院学报,2007,23(1): 79-83.
GAO Jiang-feng, DU Yang, JIANG Xin-sheng, et al. Experimental and numerical investigations of the fuel-air mixture explosion in simulative metal oilcan[J]. Journal of Logistical Engineering University, 2007, 23(1): 79-83.
[3] Tauseef S M, Rashtchian D, Abbasi Tasneem, et al. A method for simulation of vapour cloud explosions based on compu- tational fluid dynamics (CFD)[J]. Journal of Loss Prevention in the Process Industries, 2011, 24: 638-647.
[4] Ulrich Bielert, Martin Sichel. Numerical simulation of pre- mixed combustion processes in closed tubes[J]. Combustion and Flame, 1998, 114(3): 397-419.
[5] Fairweather M, Hargrave G K, Ibrahim S S, et al. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, 116(4): 504-518.
[6] 李小东,刘庆明,白春华,等. 管道中瓦斯爆炸超压场的数值模拟[J]. 煤矿安全,2008, 39(1): 5-7.
LI Xiao-dong, LIU Qing-ming, BAI Chun-hua, et al. Numerical simulation of gas explosion overpressure field in tube[J]. Safety in Coal Mines, 2008, 39(1): 5-7.
[7] 王志荣,蒋军成,郑杨艳. 连通容器气体爆炸流场的CFD模拟[J]. 化工学报,2007, 58(4): 854-861.
WANG Zhi-rong, JIANG Jun-cheng, ZHENG Yang-yan. CFD simulation on gas explosion field in linked vessels[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(4): 854-861.
[8] 王秋红,孙金华,何学超. 20L近球形密闭罐内可燃气体流动和火焰传播的数值模拟. 南京工业大学学报(自然科学版),2011, 33(2): 74-79.
Numerical simulation of combustible gas flow and the flame propagation in 20L nearly spherical and closed tank[J]. Journal of Nanjing University of Technology: Natural Science Edition, 2011, 33(2): 74-79.
[9] 王福军. 计算流体动力学分析: CFD软件原理与应用[M].北京:清华大学出版社,2004.
[10] J. Kindracki, A. Kobiera, G. Rarata, et al., Influence of ignition position and obstacles on explosion development in methane–air mixture in closed vessels, J. Loss Prev. Process Ind. 20(2007) 551-561.
[11]Fairweather M, Hargrave G K, Ibrahim S S, et al. Studies of premixed flame propagation in explosion tubes[J]. Combustion and Flame, 1999, l 16(4): 504-518.
[12] Adishchev V V, Kersey V M. Calculation of the shells of explosion chambers[J]. Combustion, Explosion, and Shock Waves, 1979, 15(6): 108-114.
[13]王震,胡可,赵阳. 拱顶钢储罐内部蒸气云爆炸冲击荷载的数值模拟[J]. 振动与冲击,2013, 32(20): 35-40.
Numerical simulation of internal vapor cloud explosion loading in dome-roof steel tanks[J]. Journal of vibration engineering, 2013, 32(20): 35-40.
[14]Van Den Berg A C, Lannoy A. Methods for vapor cloud explosion blast modeling [J]. Journal of Hazardous Materials, 1993, 34(2): 151-171.
[15]傅智敏,黄金印,臧娜. 爆炸冲击波伤害破坏作用定量分析[J]. 消防科学与技术,2009, 28(6): 390-395.
FU Zhi-min, HUANG Jin-yin, ZANG Na. Quantitative analysis for consequence of explosion shock wave[J]. Fire Science and Technology, 2009, 28(6): 390-395.
[16]Mercx W P M, Van Den Berg A C. The explosion blast prediction model in the revised CPR14E(yellow book)[J]. Process Safety Progress, 1997, 16(3): 152-159.
[17]赵衡阳. 气体和粉尘的爆炸原理[M]. 北京:北京理工大学出版社,1996.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}