高雷诺数范围内不同形状柱体流致振动特性研究

丁林1,2,张力1,姜德义2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 176-181.

PDF(1803 KB)
PDF(1803 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 176-181.
论文

高雷诺数范围内不同形状柱体流致振动特性研究

  • 丁林1,2,张力1,姜德义2
作者信息 +

Research on the Flow-induced Motion of Bluff Body with Different Cross Sections at High Reynolds Number

  • DING Lin 1,2   ZHANG Li 2  JIANG De-yi 2
Author information +
文章历史 +

摘要

流致振动是自然界和工程领域中普遍存在的一种流固耦合现象,其流固耦合过程非常复杂,涉及许多科学上的难题,一直是国际前沿研究热点之一。文章针对不同截面形状柱体的流致振动进行数值计算,研究高雷诺数范围内(30000≤Re≤110000)柱体流致振动特性,分析柱体振幅、频率和尾迹旋涡形态。结果表明,粗糙表面圆柱和类梯形柱Ⅰ的的流致振动响应强于其他形状柱体,最大振幅达到3.5D。圆柱、方柱、三角柱和类梯形柱Ⅰ的流致振动随来流速度变化均观察到明显的涡致振动初始分支、上部分支和驰振。类梯形柱Ⅱ出现高频低幅振动,未观察到明显的振动分支。另外,柱体流致振动振幅和频率与尾迹旋涡形态紧密相关,在不同的振动分支,尾迹呈现出不同的旋涡形态。

Abstract

Flow-induced motion(FIM) is widely existing in the nature and engineering applications. The interactions of the structure and flow are often very complex and the FIM is one of the research focuses in the fluid-structure interaction dynamics. In the present study, FIM of cylinders with different cross sections is numerically studied in high Reynolds number range of 30000≤Re≤110000. The amplitude, frequency, and vortex patterns of each cylinder are examined. The results indicate that the amplitude of the circular cylinder with rough surface and the quasi-trapezoid cylinderⅠare higher than others, and the maximum amplitude of 3.5 diameters is reached. The initial branch of VIV(Vortex-induced Vibration), the upper branch of VIV, and galloping are correctly predicted for the oscillation of the circular cylinder, square cylinder, triangular prism, and quasi-trapezoid cylinder Ⅰ. FIM with high frequency and low amplitude is achieved for quasi-trapezoid cylinder Ⅱ, but no FIM branch can be observed. In addition, the vortex pattern of the cylinder is closely related with the amplitude and frequecy responses, and the vortex pattern is stable when the cylinder is in one branch.

关键词

流致振动 / 旋涡脱落 / 涡致振动 / 驰振

Key words

flow-induced motion / vortex shedding / vortex-induced vibration / galloping

引用本文

导出引用
丁林1,2,张力1,姜德义2. 高雷诺数范围内不同形状柱体流致振动特性研究[J]. 振动与冲击, 2015, 34(12): 176-181
DING Lin 1,2 ZHANG Li 2 JIANG De-yi 2. Research on the Flow-induced Motion of Bluff Body with Different Cross Sections at High Reynolds Number[J]. Journal of Vibration and Shock, 2015, 34(12): 176-181

参考文献

[1] Williamson C H K, Govardhan R. Vortex-induced vibrations[J]. Annual Review of Fluid Mechanics, 2004, 36: 413-455.
[2] 唐世振, 黄维平, 刘建军, 等. 不同频率比时立管两向涡激振动及疲劳分析[J]. 振动与冲击, 2011, 30(9): 124-128.
TANG Shi-zhen, HUANG Wei-ping, LIU Jian-jun, et al. Vortex induced vibration and fatigue damage of risers under two-dimensional vortex excitation considering different frequency ratios[J]. Journal of vibration and shock, 2011, 30(9): 124-128.
[3] 孙雷, 董晓磊, 宗智, 等. 海洋立管两自由度振动的涡激损伤分析[J]. 振动与冲击, 2012, 31(19): 99-103.
SUN Lei, DONG Xiao-lei, ZONG Zhi, et al. Analysis for VIV induced fatigue damage of a marine riser with 2-DOF[J]. Journal of vibration and shock, 2012, 31(19): 99-103.
[4] Bernitsas M M, Raghavan K, Ben-Simon Y, et al. VIVACE (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow[J]. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the ASME, 2008, 130(4):041101.
[5] Bearman P W. Circular cylinder wakes and vortex-induced vibrations[J]. Journal of Fluids and Structures, 2011, 27(5–6): 648-658.
[6] 邓见, 任安禄, 邹建锋. 方柱绕流横向驰振及涡致振动数值模拟[J]. 浙江大学学报(工学版), 2005, 39(4): 595-599.
DENG Jian, REN An-lu, ZOU Jian-feng. Numerical study of transverse galloping and vortex-induced vibrations of square cylinder[J]. Journal of Zhejiang University (Engineering Science), 2005, 39(4): 595-599.
[7] Nemes A, Zhao J, Lo Jacono D, et al. The interaction between flow-induced vibration mechanisms of a square cylinder with varying angles of attack[J]. Journal of Fluid Mechanics, 2012, 710: 102-130.
[8] Sheard G J, Fitzgerald M J, Ryan K. Cylinders with square cross-section: wake instabilities with incidence angle variation[J]. Journal of Fluid Mechanics, 2009, 630: 43-69.
[9] Kumar R A, Sohn C H, Gowda B L. Influence of corner radius on the near wake structure of a transversely oscillating square cylinder[J]. Journal of mechanical science and technology, 2009, 23(9): 2390-2416.
[10] 徐枫, 欧进萍, 肖仪清. 不同截面形状柱体流致振动的 CFD 数值模拟[J]. 工程力学, 2009, 26(4): 7-15.
XU Feng, OU Jin-ping, XIAO Yi-qing. CFD numerical simulation of flow-induced vibration with different cross-section cylinder[J]. Engineering mechanics, 2009, 26(4): 7-15.
[11] Ding L, Bernitsas M M, Kim E S. 2-D URANS vs. experiments of flow induced motions of two circular cylinders in tandem with passive turbulence control for 30,000<Re<105,000[J]. Ocean Engineering, 2013, 72: 429-440.
[12] Travin A, Shur M, Strelets M, et al. Detached-eddy simulations past a circular cylinder[J]. Flow Turbulence and Combustion, 2000, 63(1-4): 293-313.
[13] Chang C C. Hydrokinetic Energy Harnessing by Enhancement of Flow Induced Motion using Passive Turbulence Control[D]. Ann Arbor, MI, USA: University of Michigan, 2010.

PDF(1803 KB)

Accesses

Citation

Detail

段落导航
相关文章

/