为了优化液体火箭推进系统,避免POGO振动引起液体火箭低频振动环境恶化对火箭飞行过程的不利影响,建立了液体火箭POGO振动系统的动力学模型,利用动态灵敏度技术,提出了液体火箭纵向振动响应对推进系统参数的灵敏度时域分析模型。通过数值仿真,得到了推进系统流体惯性、阻力和刚度参数以及泵的动态增益变化对液体火箭纵向振动响应的影响规律。研究结果表明,液体火箭纵向振动响应对流体惯性和阻力参数的敏感程度比流体刚度参数明显大,泵动态增益的变化对液体火箭纵向振动响应的影响最大,泵前短管的流体刚度变化对液体火箭纵向振动响应的影响最小。为减小液体火箭纵向振动,进一步研究POGO振动特性提供参考。
Abstract
To optimize the propulsion system in liquid rockets, avoid the low frequency vibration environment deterioration of liquid rockets which is caused by POGO vibration has disadvantage effect on the flight course of rocket system, the dynamic model of POGO vibration system in liquid rockets is established, the model of sensitivity analysis that longitudinal vibration response in liquid rockets (LVRILR) with respect to parameters of propulsion system is proposed in the time domain based on the dynamic sensitivity technique. Through numerical calculation, the laws that the inertial parameters variation of fluid, the drag parameters variation of fluid, the stiffness parameters variation of fluid and the dynamic gain variation of pump for propulsion system have an important effect on LVRILR are obtained. The results obtained show the sensitive extent of LVRILR with respect to the inertial parameters of fluid and the drag parameters of fluid is sharply greater than the stiffness parameters of fluid, the influence that the dynamic gain variation of pump has on LVRILR is the maximum, and the influence that the variation of fluid stiffness for the short pipeline which is on pump front has on LVRILR is the minimum. This provides a reference for longitudinal vibration in liquid rockets is reduced and the characteristics of POGO vibration are further researched.
关键词
液体火箭 /
POGO振动 /
纵向振动响应 /
推进系统参数 /
灵敏度
{{custom_keyword}} /
Key words
liquid rockets /
POGO vibration /
longitudinal vibration response /
parameters of propulsion system /
sensitivity
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Rubin S. Longitudinal instability of liquid rockets due to propulsion feedback (POGO)[J]. Journal of Spacecraft and Rockets, 1966, 3(8): 1188-1195.
[2] Nagai H, Noda K, Yamazaki I, Mori T. Status of H-Ⅱ rocket first stage propulsion system[J]. Journal of Propulsion and Power, 1992, 8(2): 313-319.
[3] Meyers J F. Delta Ⅱ-A new generation begins[J]. AIAA Journal, 1989, 89-2740:1-10.
[4] 黄怀德.液体火箭的POGO振动研究[J].振动工程学报,1987, 1(1): 5-13.
Huang Huaide. Research into POGO vibration of liquid rockets[J]. Journal of Vibration Engineering, 1987, 1(1): 5-13.
[5] Ujino T. POGO Prevention of H-2 launch vehicle[J]. AIAA Journal, 1994, 94-1624-CP: 2858-2867.
[6] Lack M H, Rubin S. Passive suppression of POGO on the space shuttle[R].NASA CR-132452, 1974.
[7] Marius T J. Investigation on active suppression of POGO[J]. AIAA Journal, 1995, 1995-3311-CP: 1239-1249.
[8] Zhao Z H, Ren G X, Yu Z W, et al. Parameter study on POGO stability of liquid rockets[J].Journal of Spacecraft and Rockets,2011,48(3):537-541.
[9] Dotson K W, Rubin S, Sako B H. Mission-specific POGO stability analysis with correlated pump parameters[J]. Journal of Propulsion and Power, 2005, 21:619-626
[10] Muller S, Breviere F, Kemilis A ,et al. Influence pump cavitation process on POGO diagnosis for the A5E/CA upper stage[J].AIAA Journal, 2010, 2010-6892:1-18.
[11] Ryan R S, Kiefling A K, Buchanan H J, et al. Simulation of Saturn V S-Ⅱ stage propellant feedline dynamics[J].Journal of Spacecraft and Rockets, 1970, 7(12): 1407-1412.
[12] Choi K M, Jo H K, Kim W H, et al. Sensitivity analysis of non-conservative eigensystems[J].Journal of Sound and Vibration, 2004,271:997-1011.
[13] 黄益民,刘伟,刘永寿等.充液管道模态的参数灵敏度及其共振可靠性分析[J]. 振动与冲击, 2010, 29(1): 193-196
Huang Yimin,Liu Wei,Liu Yongshou,et al.Parameter sensitivity and resonance reliability of a fluid-filled pipeline[J].Journal of Vibration and Shock,2010, 29(1): 193-196.
[14] Zhang Yimin, Huang Xianzhen, Zhao Qun. Sensitivity analysis for vibration transfer path systems with non-viscous damping[J].Journal of Vibration and Control, 2011, 17(7): 1042-1048.
[15] Oppenheinm B W, Rubin S. Advanced POGO stability analysis for liquid rockets[J].Journal of Spacecraft and Rockets, 1993.30(3): 360-373.
[16] 王其政,黄怀德,姚德源.结构耦合动力学[M].北京:宇航出版社,1999:251-273.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}