通过一种基于结构动力测试数据和贝叶斯理论的方法来更新结构可靠度。该方法考虑了结构可能受到的激励和结构模型及其参数的不确定性,利用结构在服役期间的动力测试数据,通过贝叶斯概率方法对结构参数进行了识别。利用拉普拉斯渐近估计解法,对仅根据设计条件得到的结构可靠度进行了更新。对受随机动荷载作用的某桁架结构在三种情况下的可靠度进行了计算:一为仅考虑荷载的随机性,二为考虑荷载的随机性和结构模型参数的先验分布,三为考虑荷载的随机性和结构模型参数的更新分布。比较了实际结构和有限元模型更新后的自振频率和振型,并对更新的可靠度计算结果进行了分析。结果表明,与确定性名义模型的失效概率相比,测点处自由度的更新失效概率与真实值较为接近;未测试自由度的更新失效概率可能与真实值差别较大;增加测点数不一定改善失效概率的更新效果。
Abstract
An approach based on Bayesian theorem and structural vibration test data is presented for reliability updating. The approach takes account of uncertainties of the excitation, structural model and its parameters. Structural model parameters are identified based on the vibration test data and Bayesian parameter identification method. According to Laplace asymptotic approximation, dynamic reliability obtained by design conditions is updated. Reliabilities of a truss structure subjected to dynamic random loading are calculated for three cases. Only the uncertainty of the loading is considered for the first case. The uncertainties of the loading and the prior probability distribution of model parameters are considered for the second case. The uncertainties of the loading and the updated probability distribution of model parameters are considered for the third case. Natural frequencies and mode shapes of the actual structure and the updated model are compared. Discussions about the updated reliabilities are made. Results show that the updated failure probability of the tested DOF agrees well with the actual value compared with the deterministic nominal models. The updated failure probability of untested DOFs may deviate from the actual values. Increasing tested DOFs may have no effect on the updated failure probability.
关键词
贝叶斯理论 /
动力可靠度 /
参数识别 /
失效概率 /
更新分布
{{custom_keyword}} /
Key words
Bayesian theorem /
dynamic reliability /
parameter identification /
failure probability /
updated probability distribution
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Beck J L, Katafygiotis L S. Updating models and their uncertainties. I: Bayesian statistical framework [J]. Journal of Engineering Mechanics, 1998, 124(4): 455-461.
[2] Beck J L. Bayesian system identification based on probability logic [J]. Structural Control and Health Monitoring, 2010, 17(7): 825-847.
[3] Papadimitriou C, Beck J L, Katafygiotis L S. Updating robust reliability using structural test data [J]. Probabilistic Engineering Mechanics, 2001, 16(2): 103-113.
[4] Soyoz S, Feng M Q, Shinozuka M. Structural reliability estimation with vibration-based identified parameters [J]. ASCE Journal of Engineering Mechanics, 2010, 136(1): 100-106.
[5] Katafygiots L S, Yuen K V. Bayesian spectral density approach for modal updating using ambient data [J]. Earthquake Engineering and Structural dynamics, 2001, 30(8): 1103-1123.
[6] Au S K. Fast Bayesian FFT method for ambient modal identification with separated modes [J]. ASCE Journal of Engineering Mechanics, 2011, 137(3): 214-226.
[7] Au S K, Zhang F L. Ambient modal identification of a primary-secondary structure by Fast Bayesian FFT method [J]. Mechanical Systems and Signal Processing, 2012, 28(4): 280-296.
[8] 易伟建, 吴高烈, 徐丽. 模态参数不确定分析的贝叶斯方法研究[J]. 计算力学学报, 2006, 23(6): 700-705.
Yi W J, Wu G L, Xu L. A study on the uncertainty of model parameters by Bayesian method [J]. Chinese Journal of Computational Mechanics, 2006, 23(6): 700-705.
[9] Au S K, Zhang F L. On assessing the posterior mode shape uncertainty in ambient modal identification [J]. Probabilistic Engineering Mechanics, 2011, 26(3): 427-434.
[10] Liu P, Au S K. Bayesian parameter identification of hysteretic behavior of composite walls [J]. Probabilistic Engineering Mechanics, 2013, 34(10): 101-109.
[11] Yuen K V, Beck J L. Updating properties of nonlinear dynamical systems with uncertain input [J]. ASCE Journal of Engineering Mechanics, 2003, 129(1): 9-20.
[12] 易伟建, 周云, 李浩. 基于贝叶斯统计推断的框架结构损伤诊断研究[J]. 工程力学, 2009, 26(5): 121-129.
Yi W J, Zhou Y, Li H. Damage assessment research on frame structure based on Bayesian statistical inference [J]. Engineering Mechanics, 2009, 26(5): 121-129.
[13] Sohn H, Law K H. A Bayesian probabilistic approach for structure damage detection [J]. Earthquake Engineering and Structural dynamics, 1997, 26(12): 1259-1281.
[14] Papadimitriou C, Beck J L, Katafygiotis L S. Asymptotic expansions for reliability and moments of uncertain systems [J]. ASCE Journal of Engineering Mechanics, 1997, 123(12): 1219-1229.
[15] Şahin A, Bayraktar A, Özcan D M, Sevim B, Altunışık A C, Türker T. Dynamic field test, system identification, and modal validation of an RC Minaret: Preprocessing and postprocessing the wind-induced ambient vibration data [J]. ASCE Journal of Performance of Constructed Facilities, 2011, 25(4): 336-356.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}