超磁致伸缩作动器的率相关振动控制实验研究

郭咏新1,张臻1,王贞艳1,周克敏2,3,毛剑琴1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 51-57.

PDF(2571 KB)
PDF(2571 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 51-57.
论文

超磁致伸缩作动器的率相关振动控制实验研究

  • 郭咏新1 ,张臻1,王贞艳1,周克敏2,3,毛剑琴1
作者信息 +

Experimental research on rate-dependent vibration control of giant magnetostrictive actuators

  •   GUO Yongxin 1  ZHANG Zhen 1  WANG Zhenyan 1  ZHOU Kemin 2,3  MAO Jianqin 1 
Author information +
文章历史 +

摘要

以Hammerstein模型对超磁致伸缩作动器(GMA, Giant Magnetostrictive Actuators)的率相关迟滞非线性进行建模,其中改进的PI (MPI, Modified Prandtl-Ishlinskii)模型和外因输入自回归模型(ARX, Autoregressive Model with Exogenous Input)分别表示模型的静态非线性部分和线性动态部分。在所建模型的基础上,提出了一种H∞鲁棒振动控制方法。GMA单自由度主动隔振平台的减振控制实验结果表明:H∞鲁棒振动控制方法可以在1个振动周期内,将频率范围为1-100Hz的振动衰减88%-92%;而基于双滤波器的自适应滤波x-LMS算法收敛时间近似于1s,在40-100Hz的频率范围内可将振动衰减90%-92%,而在10-30Hz的频率范围内只能将振动衰减43%-74%。因此本文所提出的H∞鲁棒振动控制方法收敛速度更快,控制频带更宽,而且不需要对不同频率激励下的控制通道进行重复建模。

Abstract

A Hammerstein model is used to describe the rate-dependent hysteresis nonlinearity of giant magnetostrictive actuators (GMA). A modified Prandtl-Ishlinskii (MPI) model and an Autoregressive Model with Exogenous Input (ARX) represent respectively the static nonlinear part and the linear dynamic part of the Hammerstein model. Based on the proposed model, a new H∞ robust control method is proposed for vibration control. Experimental results on a one degree-of-freedom vibration isolation platform with a GMA demonstrate that the H∞ robust control method can attenuate 88%-92% of the vibration coming from the base in the frequency range of 1-100Hz in 1 vibration cycle, while the dual-filter-based adaptive filter x-LMS algorithm converges to the steady state in about 1 second, it can attenuate 90%-92% of the vibration  in the frequency range of 40-100Hz and 43%-74% in the frequency range of 10-30Hz. Hence the proposed H∞ robust vibration control method has a wider control band and a faster convergence rate compared to the dual-filter-based adaptive filter x-LMS algorithm, and does not require re-modeling the control channels under the excitation of different frequencies. 

关键词

超磁致伸缩作动器;率相关迟滞非线性;Hammerstein模型;振动控制;H&infin / 鲁棒控制;自适应滤波

Key words

giant magnetostrictive actuator / rate-dependent hysteresis nonlinearity / Hammerstein model / active vibration control / H&infin / robust control / adaptive filter

引用本文

导出引用
郭咏新1,张臻1,王贞艳1,周克敏2,3,毛剑琴1. 超磁致伸缩作动器的率相关振动控制实验研究[J]. 振动与冲击, 2015, 34(12): 51-57
GUO Yongxin 1 ZHANG Zhen 1 WANG Zhenyan 1 ZHOU Kemin 2,3 MAO Jianqin 1 . Experimental research on rate-dependent vibration control of giant magnetostrictive actuators[J]. Journal of Vibration and Shock, 2015, 34(12): 51-57

参考文献

[1] 李超. 磁致伸缩智能结构的建模、控制与实验研究[D]. 北京:北京航空航天大学,2006.
LI Chao. Modeling, control, and experimental research of magnetostrictive smart structures [D]. Beihang university, 2006.
[2] Jiles D C,Atherton D L. Theory of ferromagnetic hysteresis [J].Journal of Magnetism and Materials, 1986, 61(1-2):48-60.
[3] Brokate M, Sprekels J. Hysteresis and phase transitions [M]. Berlin: Springer Verlag, 1996.
[4] Mayergoyz I D. Dynamic Preisach model for hysteresis [J]. IEEE Trans Magn, 1988, 24(6): 2925-2927.
[5] Webb G V, Lagoudas D C, Kurdila A J. Hysteresis modeling of SMA actuators for control applications [J]. Journal of Intelligent Material Systems and Structures, 1998, 9(6):432-448.
[6] Kuhnen K. Modeling, identification and compensation of complex hysteresis nonlinearities, a modified Prandtl- Ishlinskii approach [J]. European Journal of Control, 2003, 9 (4): 407-418.
[7] 赵新龙,谭永红,董建萍.基于扩展输入空间法的压电执行器迟滞特性动态建模[J].机械工程学报, 2010, 46(20):169-174
ZHAO Xin-long, TAN Yong-hong, DONG Jian-ping. Dynamic modeling of rate-dependent hysteresis in piezoelectric actuators based on expanded input space method [J]. Journal of Mechanical Engineering, 2010, 46(20):169-174
[8] Lei W, Mao J Q, Ma Y H. A new modeling method for nonlinear rate-dependent hysteresis system based on LS-SVM [C]. Proceedings of IEEE International Conference on Control, Automation, Robotics and Vision. Hanoi, Vietnam: IEEE, 2008: 1442-1446.
[9] Mao J Q, Ding H S. Intelligent Modeling and Control for Nonlinear Systems with Rate-Dependent Hysteresis [J]. Science in China Press, 2009, 52 (4): 547-722.
[10] Slaughter J C, Dapino M J, Smith R C, Flatau A B. Modeling of a Terfenol-D ultrasonic transducer [C]. Proceedings of Smart Structures and Materials, 2000: Smart Structures and Integrated Systems, California, USA: SPIE, 2000:366-377.
[11] Tan X B, Baras J S. Modeling and control of hysteresis in magnetostrictive actuators [J]. Automatica, 2004, 40: 1469- 1480.
[12] Ma Y H, Mao J Q, Zhang Z. On generalized dynamic Preisach operator with application to hysteresis nonlinear systems [J].  IEEE Transactions on Control Systems Technology, 2011, 19(6):1527 -1533.
[13] Janaideh M A, Su C Y, Rakheja S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Mater. Struct. , 2008, 17(3): 035026.1-035026.11.
[14 ] Janaideh M A, Rakheja S, Su C Y. A generalized Prandtl- Ishlinskii model for characterizing rate dependent hysteresis [C]. Proceedings of 16th IEEE CCA Part of IEEE Multi- conference on Systems and Control, Singapore: IEEE, 2007: 343-348.
[15] 郭咏新,毛剑琴. 超磁致伸缩作动器的率相关建模与跟踪控制[J].北京航空航天大学学报, 39 (10): 1360-1365, 2013.
GUO Yong-xin, MAO Jian-qin. Rate-dependent modeling and tracking control of giant magnetostrive actuators [J]. Journal of Beijing University of Aeronautics and Astronautics, 39 (10): 1360- 1365, 2013.
[16] 王贞艳,张臻,周克敏,毛剑琴.压电迟滞非线性系统的率相关动态建模与跟踪控制 [C].第32届中国控制会议论文集. 西安:IEEE, 2013:303-308.
WANG Zhen-yan, ZHANG Zhen, ZHOU Ke-min, MAO Jian-qin. Rate-dependent dynamic modeling and tracking control of piezoelectric nonlinear systems [C]. Proceedings of the 32nd Chinese Control Conference. Xi’an: IEEE, 2013:303-308.
[17] Hiller M W, Bryant M D, Umegaki J. Attenuation and transformation of vibration through active control of magnetostrictive Terfenol [J]. Journal of sound and vibration, 1989:134(3):507-519.
[18] Zhang T, Yang B T, Li H G, Meng G. Dynamic modeling and adaptive vibration control study for giant magnetostrictive actuators [J]. Sensors and Actuators A, 2013, 190:96-105.
[19] Moon S J, Lim C W, Kim B H, Park Y J. Structural vibration control using linear magnetostrictive actuators [J]. Journal of Sound and Vibration, 2007,302 (4-5): 875-891.
[20] Bryant M D, Fernandez B, Wang N, Murty V V, Vadlamani V, West T S. Active vibration control in structures using magnetostrictive Terfenol with feedback and/or neural network controllers [J]. Journal of Intelligent Material Systems and Structures, 1993, Oct. Vol. 4,484-48.
[21] Zhang C L, Mei D Q, Chen Z C. Active vibration isolation of a micro-manufacturing platform based on a neural network [J]. Journal of Materials Processing Technology, 2002, 129: 634-639.
[22] Geng Z J, Haynes L S. Six degree-of-freedom active vibration control using the stewart platforms [J]. IEEE Transactions on Control Systems Technology, 1994, 2(1):45- 53.
[23] 顾仲权,朱金才,彭福军,马扣根. 磁致伸缩材料作动器在振动主动控制中的应用研究[J]. 振动工程学报,1998, 11 (4): 381-388
GU Zhong-quan, ZHU Jin-cai, PENG Fu-jun, MA Kou-gen. Study on the application of magnetostrictive actuator for active vibration control [J]. Journal of Vibration Engineering, 1998, 11 (4): 381-388.
[24] 李超,李琳. 磁致伸缩材料作动器用于主动振动控制
的实验研究[J]. 航空动力学报,2003, 18(1): 197-202.
LI Chao, LI Lin. Active Vibration Control Using magnetostrictive material [J]. Journal of Aerospace Power, 2003, 18(1): 197- 202.
[25] 张春良. 微制造平台振动主动控制研究[D].杭州:浙江大学,2003.
ZHANG Chun-liang. Study on active vibration control of micro-manufacturing platform [D]. Zhejiang University, 2003.
[26] 贾振元, 郭东明.超磁致伸缩材料微位移执行器原理与应用.北京:科学出版社,2008
JIA Zhen-Yuan, GUO Dong-Ming. Theory and application of giant magnetostrictive mirodisplacement actuator. Beijing: Science Press, 2008
[27] Zhou K, Doyle J C. Essentials of Robust Control [M]. Upper Saddle River: Prentice Hall, 1999.
[28]吴敏,桂卫华,何勇.现代鲁棒控制(第二版).长沙:中南大学出版社,2006
WU Min, GUI Wei-Hua, HE Yong. Modern Robust Control (the Second Edition). Changsha: Central South University Press, 2006
[29] 解学书,钟宜生.H无穷控制理论. 北京:清华大学出版社,1994
XIE Xue-Shu, ZHONG Yi-Shen. H robust control theory.  Beijing: Tsinghua University Press, 1994

PDF(2571 KB)

Accesses

Citation

Detail

段落导航
相关文章

/