钢筋混凝土框架结构梁柱中节点动态力学性能试验研究

范国玺1,2 宋玉普2 王立成2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 58-64.

PDF(1800 KB)
PDF(1800 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 58-64.
论文

钢筋混凝土框架结构梁柱中节点动态力学性能试验研究

  • 范国玺1,2     宋玉普2     王立成2
作者信息 +

Experimental study on the dynamic mechanical properties of interior RC frame beam-column joints

  • Fan Guoxi1,2    Song Yupu2   Wang Licheng2
Author information +
文章历史 +

摘要

受材料率敏感性的影响,钢筋混凝土构件具有率敏感效应,其受力性能在不同应变率水平下均有所不同。以往的研究多数集中于混凝土和钢筋材料率效应的研究,有关梁柱节点试件快速加载下的研究相对较少。本文研究了15个梁柱中节点在不同轴压比下的动态力学性能。运用二项式逻辑回归模型,预测了梁柱节点组合体的破坏形式,发现:随着应变率的提高,节点组合体内的裂缝数量不断减少,更倾向于单一主裂缝破坏;轴压比增大后,节点核心区的剪切变形以及斜裂缝与竖向轴力的夹角减小,应变率或轴压比增大后,节点组合体严重损伤部分发生转移;应变率的提高,对钢筋黏结强度起不利影响,钢筋滑移量随应变率的提高而增大。对比不同规范对节点抗剪承载力的计算公式发现,ASCE SEI 41-06规定的节点剪切强度因子偏高,ACI 352R-02规定的节点剪切强度因子较为合理,但ASCE SEI 41-06和ACI 352R-02都没有考虑轴压比对节点抗剪承载力的影响,相比之下GB50010-2010考虑了轴压比的影响,计算结果更合理。在拟静态设计公式中采用材料动态强度的方法计算其承载力,往往会过高估计梁柱节点的抗剪承载力, 是偏于不安全的。通过多元线性回归分析,得到了不同应变率及轴压比下节点水平抗剪承载力增大系数的经验方程。

Abstract

Due to the rate sensitivity of materials, reinforced concrete members are sensitive to the strain rate, with varying mechanical properties at different strain rates. The majority of previous studies were focused more on the rate effect of concrete and reinforcement, but less on beam-column joints under high strain rate. The dynamic mechanical properties of 15 interior beam-column joint combination specimens subjected to various axial compression ratios are studied in this paper. The failure pattern of interior beam-column joint is predicted by binomial logistic regression model. Test results show that with the increasing of the strain rate, the number of crack within the joint continues to decline with the tendency to a single main crack damage. The shear deformation in the core area of the joint and the angle between diagonal crack and vertical axial force continuously decrease as the axial compression ratio increases. Serious damage part of the joint transfers with the increasing of axial compression ratio or strain rate. The increasing of the strain rate has adverse effect on the bond strength of reinforcement, and increases the bond slip of reinforcement. It can be found from comparison of different specifications that the joint shear strength factor specified by ASCE SEI 41-06 is higher while that specified by ACI 352R-02 is more reasonable. However, both ASCE SEI 41-06 and ACI 352R-02 do not consider the effect of axial compression ratio on the joint shear carrying capacity. In contrast with the aforementioned building codes, GB50010-2010 considers the axial compression ratio effect with more reasonable calculation results. The study shows that if the dynamic strengths of concrete and reinforcement are directly substituted into the quasi-static design formulas to calculate the shear carrying capacity of the beam-column joint, it is unsafe due to overestimate the shear carrying capacity of the joint. An empirical equation to predict the dynamic increase factor of horizontal shear carrying capacity of beam-column joints under different axial compression ratios and strain rates is also proposed through multiple linear regression analysis.

关键词

梁柱中节点 / 应变率 / 二项式逻辑回归模型 / 黏结滑移 / 承载力

Key words

interior beam-column joint / strain rate / binomial logistic regression model / bond slip / carrying capacity

引用本文

导出引用
范国玺1,2 宋玉普2 王立成2. 钢筋混凝土框架结构梁柱中节点动态力学性能试验研究[J]. 振动与冲击, 2015, 34(12): 58-64
Fan Guoxi1,2 Song Yupu2 Wang Licheng2. Experimental study on the dynamic mechanical properties of interior RC frame beam-column joints[J]. Journal of Vibration and Shock, 2015, 34(12): 58-64

参考文献

[1] Hall J. Northridge earthquake preliminary reconnaissance report [R]. California: Earthquake Engineering Research Institute, Oakland, 1994: 94-101.
[2] Bischoff P H, Perry S H. Compressive behaviour of concrete at high strain rates [J]. Material and Structures, 1991, 24(6): 425-450.
[3] Cotterll A H. The mechanical properties of matter [M].New York: John Wiley and Sons Inc, 1964.
[4] Malvar L J, Ross C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95 (6): 735-739.
[5] 梁 磊,顾强康,原 璐. AFRP约束混凝土多次冲击试验研究[J]. 振动与冲击, 2013, 32(5): 90-95.
LIANG Lei, GU Qiang-kang, YUAN Lu. Experimental research on AFRP confined concrete under repeated impact [J]. Journal of Vibration and Shock, 2013, 32(5): 90-95.
[6] Follansbee P S, Kocks U F. Constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable [J]. Acta Metall, 1988, 36: 81 –93.
[7] Murr L E. Metallurgical effects of shock and high-strain-rate loading [J]. Materials at High Strain Rates, 1987, 1: 1–46.
[8] Manjoine M J. Influence of rate of strain and temperature on yield stress of mild steel [J]. Journal of Applied Mechanics, 1944, 11: 211-8.
[9] Mutsuyoshi H, Machida A. Properties and failure of reinforced concrete members subjected to dynamic loading [J]. Transactions of the Japan Concrete Institute, 1984, 6:521 - 8.
[10] Adhikary S D, Li B, Fujikake K. Dynamic behavior of reinforced concrete beams under varying rates of concentrated loading [J]. International Journal of Impact Engineering, 2012, 47(9): 24-38.
[11] 李敏. 材料的率相关性对钢筋混凝土结构动力性能的影响[D]. 大连: 大连理工大学, 2011, 1-132.
LI Min. Effects of rate-dependent properties of material on dynamic properties of reinforced concrete structural [D]. Dalian: Dalian University of Technology, 2011, 1-132.
[12] Lamarche C P, Tremblay R. Seismically induced cyclic buckling of steel columns including residual-stress and strain-rate effects [J]. Journal of Constructional Steel Research, 2011, 67(9): 1401-1410.
[13] 龙业平. 钢筋混凝土柱快速加载试验及动力滞回规律研究[D]. 长沙: 湖南大学, 2010, 1-71.
LONG Ye-ping. Experimental study on dynamic hysteretic rule of reinforced concrete columns under rapid loading [D]. Changsha: Hunan University, 2010, 1-71.
[14] Bhowmick A K, Driver R G, Grondin G Y. Seismic analysis of steel plate shear walls considering strain rate and P–delta effects [J]. Journal of Constructional Steel Research, 2009, 65(5): 1149-1159.
[15] 张晓丽. 加载速率对钢筋混凝土高剪力墙抗震性能的影响[D]. 大连: 大连理工大学, 2012, 1-66.
ZHANG Xiao-li. Effects of Loading Rates on Seismic Behavior of Reinforced Concrete High Shear Walls [D], 2012, 1-66.
[16] Zhu L, Elwood K J, Haukaas T. Assessment of expected failure mode for reinforced concrete columns [C]. 8th US National Conference on Earthquake Engineering, 2006. Paper no. 1001.
[17] Peduzzi P, Concato J, Kemper E, et al. A simulation study of the number of events per variable in logistic regression analysis [J]. Journal of Clinical Epidemiology, 1996, 49(12): 1373-1379.
[18] King G, Zeng L. Logistic regression in rare events data [J]. Political Analysis, 2001, 9(2): 137-163.
[19] Pearce J, Ferrier S. Evaluating the predictive performance of habitat models developed using logistic regression [J]. Ecological Modelling, 2000, 133(3): 225-245.
[20] Greene W H. Econometric analysis [M]. Singapore: Pearson Education, 2000.
[21] Hosmer D W, Lemeshow S. Applied logistic regression [M]. New York: Wiley-Interscience, 2000.
[22] ACI 318M-05 Building code requirements for reinforced concrete and commentary [S]. Farmington Hills, Michigan: American Concrete Institute (ACI), 2005.
[23] Nilanjan M, Pijush S. Prediction of inelastic mechanisms leading to seismic failure of interior reinforced concrete beam–column connections [J]. Practice Periodical on Structural Design and Construction, 2012, 17(3): 110-118.
[24] Mansour M, Lee J, Hsu T. Cyclic stress-strain curves of concrete and steel bars in membrane elements [J]. Journal of Structural Engineering , 2001, 127(12): 1402-1411.
[25] Asprone D, Frascadore R, Ludovico M D, et al. Influence of strain rate on the seismic response of RC structures [J]. Engineering Structures, 2012, 35(2): 29-36.
[26] Lowes L N, Altoontash A. Modeling reinforced-concrete beam-column joints subjected to cyclic loading [J]. Journal of Structural Engineering, 2003, 129(12): 1686-1697.
[27] CEB Bulletin 187. Concrete structures under impact and impulsive loading [R]. Lausanne, Switzerland: Comité Euro-International du Béton, 1988.
[28] 李敏, 李宏男. 建筑钢筋动态试验及本构模型 [J]. 土木工程学报, 2010, 43(4): 70-75.
LI Min, LI Hong-nan. Dynamic test and constitutive model for reinforcing steel [J]. China Civil Engineering Journal, 2010, 43(4): 70-75.
[29] 赵国藩. 高等钢筋混凝土结构学 [M].北京: 机械工业出版社, 2005: 383-387.
ZHAO Guo-fan. Advanced reinforced concrete structures [M]. Beijing: China Machine Press, 2005: 383-387.
[30] GB50010-2010 混凝土结构设计规范 [S]. 北京:中国建筑工业出版社, 2010.
GB50010-2010. Code for design of concrete structures [S]. BeiJing: China Architecture and Building Press, 2010.
[31] ACI 352R-02 Recommendations for design of beam-column connections in monolithic reinforced concrete structures [S]. Farmington Hills, Michigan: ACI-ASCE Committee, 2002.
[32] ASCE SEI 41 Seismic rehabilitation of existing buildings [S]. Reston, Virginia: American Society of Civil Engineers (ASCE), 2006.

PDF(1800 KB)

Accesses

Citation

Detail

段落导航
相关文章

/