由于复合材料性能分散度大、加工精度较低,为复合材料薄壁吸能结构引入了不可忽略的不确定性因素,为此,提出了一种含不确定参数的复合材料薄壁结构吸能特性的评估方法并进行了算例研究。复合材料薄壁圆管是一种典型的吸能元件,圆管的壁厚和内径是对其吸能特性有显著影响的特征几何尺寸,文中考虑了这两个参数的不确定性,在准静态压溃的条件下评估了薄壁圆管的引发比应力和比吸能这两个关键吸能指标。首先,利用区间分布来描述壁厚和内径的不确定性,其次应用有限元方法建立区间内不确定参数和结构吸能特性指标间的二阶响应面函数,最后对响应面函数进行区间摄动从而确定吸能特性指标的分布区间。算例研究结果显示,与比吸能相比,引发比应力受壁厚和内径不确定性的影响更大。此外,相比于内径,壁厚的不确定性对吸能特性影响更显著,因此为获得稳定的结构吸能特性应尽量提高复合材料圆管壁厚的加工精度。
Abstract
Due to the large deviation of material properties and inherent machining tolerance, uncertain factors should be considered for designing and analyzing composite structures. An evaluation method for energy-absorbing characteristics of thin-walled composite structures with uncertain parameters was proposed and developed herein. Thin-walled composite tubes extensively applied on automobile and aircraft are typical crushable elements for absorbing collision energy. The uncertainties due to machining tolerance from thickness and inner diameter of a tube were considered in the present paper and represented by interval model. Triggering Specific Stress (TSS) and Specific Energy Absorption (SEA) are concerned and calculated by Finite Element Analysis for indicating energy-absorbing characteristics of the specimen under quasi-static axial crushing. Response surface method was then used to build a second-order function between uncertain parameters and the two indicators of energy-absorbing characteristics. Interval perturbation of the response surface function was at last performed to establish the interval of TSS and SEA respectively. The results showed that, compared to SEA, TSS is more affected by the uncertainty from wall thickness and inner diameter. In addition, the effect of uncertainty from wall thickness on energy-absorbing characteristics is more significant than that from inner diameter. This investigation revealed that the machining tolerance of composite tube should be limited as low as possible to keep designed energy-absorbing characteristics.
关键词
复合材料薄壁结构 /
吸能特性 /
不确定性 /
区间模型 /
有限元分析
{{custom_keyword}} /
Key words
thin-walled composite structures /
energy-absorbing characteristics /
uncertainty /
interval model;finite element analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张 弘, 魏榕祥. 通用飞机抗坠撞设计指南 [M]. 北京: 航空工业出版社, 2009. .
Zhang hong, Wei Rongxiang. General aircraft drop impact resistant design guide [M]. Beijing: Aviation industry publisher , 2009.
[2] Fasanella E L. Multi-terrain impact testing and simulation of a composite energy absorbing fuselage section [R]. American Helicopter Society 60th Annual Forum. Baltimore: MD, 2004.
[3] A.G. Mamalis. Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental [J].Composite Structures, 2004, 63:347-360.
[4] Xinran Xiao. Modeling energy absorption with a damage mechanics based composite material model [J].Journal of Composite Materials, 2009, 43: 427-244.
[5] 卢子兴,王晓英,俸翔. 复合材料层合板临界屈曲载荷分散性[J].复合材料学报, 2013, 30(1): 194-200.
Lu Zi-xing, Wang Xiao-ying, Feng Xiang. Critiacl bucking load discrepancy of composite laminates[J]. Acta materiae compositae sinica, 2013,30(1):194-200.
[6] Jiancheng Huang , Xinwei Wang. Numerical and experimental investigations on the axial crushing response of composite tubes[J]. Composite Structures:2009,91:222-228.
[7] 龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟[J]. H航空学报, 2005, 26(3): 298-302.
Gong Jun-jie, Wang Xinwei. Numerical Simulation of Energy Absorption Capability of Composite Waved Beams[J]. Acta aeronautica et astronautica sinica, 2005,26(3):298-302.
[8] M.W. Joosten, S. Dutton, D. Kelly, et al.. Experimental and numerical investigation of the crushing responseof an open section composite energy absorbing element[J]. Composite Structures, 2011,93:682-689.
[9] 张丽娟, 邱志平. 含不确定参数的复合材料层合板屈曲的两种非概率方法[J]. 工程与建设, 2008,22(3):293-295.
Zhang li-juan, Qiu zhi-ping. Two Non-probability methods buckling analysis of composite laminated with uncertain parameters[J]. Engineering and construction, 2008,22(3):293-295
[10] 苑凯华,邱志平. 含不确定参数的复合材料壁板热颤振分析[J]. 航空学报, 2010,31(3): 119-124.
Yuan Kai-hua, Qiu Zhi-ping. Thermal flutter analysis of composite panel with uncertain parameters[J]. Acta aeronautica et astronautica sinica, 2010,31(3):119-124.
[11] S. Salehghaffari, M. Rais-Rohani. Evidence-Based Design Optimization of Energy Absorbing Components under Material Field Uncertainty[A].53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference[C]. 2012, Honolulu, Hawaii
[12] 王青春, 范子杰. 利用Ls-Dyna计算结构准静态压溃的改进方法[J]. 力学与实践, 2003, 25(3): 20-23.
Wang qing-chun, Fan zhi-jie. Improvement in anslysis of quasi-static collapase with Ls-dyna[J]. Mechanics in engineering, 2003,25(3):20-23
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}