提出了工作质体无量纲特征幅值、特征幅值放大倍数、最大参振物料系数、隔振架与基础之间的力传递系数、同步能力系数和临界隔振频率比作为描述三质体振动机的性能指标。通过数值计算,研究了系统动力学参数对振动机各性能指标的影响规律。当工作质体工作于超共振态时,特征幅值和力传递系数随隔振频率增加而减小。当隔振频率比相同且大于临界隔振频率比时,随工作质体与隔振质体质量比的减小,初始特征幅值和最大力传递系数增大,特征幅值放大倍数和最大参振物料系数略有减小,即较小的工作质体与隔振质体质量比,有利于提高振动机的综合性能指标。振动激励角越小,系统同步能力系数越大。当支撑刚体作为物料箱时,同步能力系数随工作质体与激振器安装刚体的质量比的增加而增大。系统结构能够满足两激振器自同步运行的稳定性要求,计算机仿真结果验证了理论研究的正确性。
Abstract
The dimensionless characteristic amplitude of the working mass (DCAWM), the magnification coefficient of characteristic amplitude (MCCM), the maximum coefficient of vibration of material (MCVM), the force transfer coefficient between the vibration isolation frame and the foundation (FTCBVIFF), the synchronization ability coefficient (SAC), and the critical frequency ratio of vibration isolation mass(CFRVIM) are proposed to describe the performance of a three-mass vibrating machine. Effect of dynamic parameters of the system on the performance of the vibrating machine is investigated by numeric method. When the working mass operates at a state of supper resonance, the DCAWM and the FTCBVIFF decrease with the increase of frequency ratio of vibration isolation mass (FRVIM). At the FRVIM greater than the CFRVIM, with the increase of the FRVIM, the initial DCAWM and the maximum FTCBVIFF increase, and the MCCM and the MCVM decrease. Hence, the smaller the FRVIM is, the better the performance of the vibrating machine is. The smaller the exciting angle is, the bigger the synchronization ability coefficient of the two exciters is. When the supporting rigid body serves as the material box, the greater the mass ratio of the working mass and the exciter installation body is, the greater the mass ratio of the working mass and the exciter installation body is. The structural parameters of the system can satisfy the synchronization stable criterion. The computer simulation verifies the theoretical investigation results.
关键词
振动系统 /
隔振 /
自同步 /
稳定性
{{custom_keyword}} /
Key words
Vibrating system /
Vibration isolation /
Self-synchronization /
Stability
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Blekhman I I. Synchronization in Science and Technology[M]. New York: ASME Press, 1988
[2] Blekhman I I. Method of direct separation of motions in the action of vibration on nonlinear dynamic system. Izv, A N SSSR, MTT, 1976, 6, 13-27.
[3] Wen B C, Fan J, Zhao C Y, Xiong W L. Vibration Synchronization and Controlled Synchronization in Engineering[M]. Beijing: Science Press, 2009.
[4] 闻邦椿, 李以农, 张义民. 振动利用工程[M]. 北京:科学出版社, 2005.
Wen B C, Li Y N, Zhang Y M. Vibration Utilization Engineering [M]. Beijing: Science Press, 2005.
[5] WEN B C, ZHANG H, LIU S Y, et al. Theory and Techniques of Vibrating Machinery and Their Applications [M]. Beijing, Science Press, 2010.
[6] 刘劲涛, 刘杰, 李小号, 等. 反共振时质体振幅最小的反共振振动机动力学分析与仿真[J]. 振动与冲击, 2009, 28(9):109-112.
Liu Jintao, Liu Jie, Li Xiaohao, et al. Analysis and simulation of dynamics for a anti-resonant vibrating machine of the minimum amplitude. Journal of Vibration and Shock, 2009, 28(9):109-112.
[7] Zhao C Y, Zhu H T, Wang R Z, et al. Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear motion. Part I: Theoretical analysis, Shock and Vibration, 2009, 16(5): 505-516.
[8] ZHAO C Y, ZHU H T, BAI T J, et al. Synchronization of two non-identical coupled exciters in a non-resonant vibrating system of linear motion. Part II: Numeric analysis, Shock and Vibration, 2009, 16(5): 517-528.
[9] Zhao C Y, Zhang Y M, Wen B C. Synchronization and general dynamic symmetry of a vibrating system with two exciters rotating in opposite directions, Chinese Physics B, 2010, 19(3): 030301.
[10] 赵春雨,刘戡,叶小芬, 等. 反向回转双机驱动振动系统的自同步理论 [J]. 机械工程学报, 2009, 35(9): 24-30
Zhao C Y, Liu K, Yie X F, et al. Theory of self-synchronization for a vibrating system with two exciters rotating in opposite directions [J]. Journal of Mechanical Engineering, 2009, 35(9):24-30.
[11] 陆启韶. 常微分方程的定性方法与分叉[M]. 北京:北京航空航天大学出版社, 1989.
Lu Qishao. Qualitative methods and bifurcations of ordinary differential equations[M]. Beijing: Press of Beijing University of Aeronautics and Astronautics, 1989.
[12] Zhao C Y, Zhu H T, Zhang Y M, et al. Synchronization of two coupled exciters in a vibrating system of spatial motion [J]. Acta Mech Sin, 2010, 26(2):477–493
[13] 赵春雨,王得刚,李杰,等. 同向回转双机驱动振动系统的频率俘获. 应用力学学报, 2009, 26(2): 283-287.
Zhao C Y, Wang D G, Li J, et al. Frequency capture of a vibrating system with dual-motor drives rotating in the same direction. Chinese Journal of Applied Mechanics, 2009, 26(2): 283-287.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}