基于CFD和CSD耦合的涡激振和颤振气弹模拟

李永乐1,朱佳琪1,2,唐浩俊1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 85-89.

PDF(2364 KB)
PDF(2364 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (12) : 85-89.
论文

基于CFD和CSD耦合的涡激振和颤振气弹模拟

  •  李永乐1,朱佳琪1,2,唐浩俊1
作者信息 +

Aeroelastic simulation of vortex-induced vibration and flutter based on CFD/CSD coupling solution

  • LI Yong-le1,  ZHU Jia-qi1,2,  TANG Hao-jun1
Author information +
文章历史 +

摘要

以FLUENT为研究工具,利用微分方程的数值解法和动网格技术,基于松耦合方法将Newmark算法通过UDF嵌入Fluent软件中,实现了CFD和CSD耦合的分析方法。通过建立二维方柱绕流模型,计算了竖向单自由度振动方柱在不同风速下的斯托罗哈数和最大振幅的变化情况,模拟了涡激共振锁定现象,并与静态绕流的结果进行了对比。建立了具有竖向振动和扭转振动二自由度的薄平板模型,并识别了该平板的颤振导数,进一步对其弯扭耦合颤振临界风速进行了逼近计算,本文方法得到的颤振临界风速与Scanlan理论公式和Selberg理论公式吻合较好。

Abstract

Choosing the FLUENT as a tool, using the numerical solution of differential equation and the dynamic mesh model, CFD/CSD coupling solution based on loose coupling was realized by embedding the Newmark method into Fluent by UDF function. A 2D-square cylinder model was established to investigate the change of Strouhal number and maximum vertical vortex-excited  amplitude of the square cylinder with wind speed. The lock-in phenomenon of vortex-excited resonance was observed during the simulation and compared with the result of static square cylinder. A 2D flat plate model with vertical and torsional degrees of freedom was established to identify the flutter derivatives of this flat plate and to determine the flutter critical wind speed. The simulation result agrees very well with the wind speeds calculated by the Scanlan’s formula and Selberg’s formula.

关键词

CFD和CSD耦合分析 / 动网格 / 涡激振 / 颤振 / 气弹效应

Key words

CFD-CSD coupling analysis / dynamic mesh / vortex-induced vibration / flutter / aeroelastic effect

引用本文

导出引用
李永乐1,朱佳琪1,2,唐浩俊1. 基于CFD和CSD耦合的涡激振和颤振气弹模拟[J]. 振动与冲击, 2015, 34(12): 85-89
LI Yong-le1, ZHU Jia-qi1,2, TANG Hao-jun1. Aeroelastic simulation of vortex-induced vibration and flutter based on CFD/CSD coupling solution[J]. Journal of Vibration and Shock, 2015, 34(12): 85-89

参考文献

[1]  Schulz K.W., Kallinderis Y. Unsteady flow structure interaction for incompressible flows using deformable hybrid grids[J]. Journal of Computational Physics, 1998,143:569-597.
[2]  Chio C.K., Yu W.J. engineering and industrial Finite element techniques for wind engineering[J]. Journal of wind aerodynamics, 1999,81:83-95.
[3]  陈文礼,李惠. 基于RANS的圆柱风致涡激振动的CFD数值模拟[J]. 西安建筑科技大学学报(自然科学版), 2006,38(4):509-513.
CHEN Wenli, LI Hui. CFD numerical simulation of vortex-induced vibration of a circular cylinder based on a RANS method[J]. Journal of Xi’an university of archite- cture and technology, 2006,38(4):509-513. (in Chinese)
[4]  方平治,顾明. 圆柱两自由度涡激振动的数值模拟研究[J]. 同济大学学报(自然科学版), 2008,36(3):295-298.
FANG Pingzhi, GU Ming. Numerical simulation for vortex-induced vibration of circular cylinder with two degree of feedoms[J]. Journal of Tongji university(natural science), 2008, 36(3): 295-298. (in Chinese)
[5]  詹昊, 方秦汉, 李万平. 钢桁拱桥吊杆涡激振动仿真分析[J]. 中国铁道科学, 2009,30(2):31-37.
ZHAN Hao, FANG Qinhan, LI Wanping. Numerical simulation of vortex-induced vibration of steel truss arch bridge hanger[J]. China railway science, 2009, 30(2): 31-37. (in Chinese)
[6]  陈政清. 桥梁风工程[M]. 北京:人民交通出版社, 2005.
[7]  项海帆等. 现代桥梁抗风理论与实践[M]. 北京:人民交通出版社, 2005.
[8]  黄林. 列车风与自然风联合作用下的车-桥耦合振动分析[D]. 成都: 西南交通大学, 2007.
HUANG Lin. An analysis of vehicle-bridge vibration under train induced wind and natural wind[D]. Chengdu, Southwest Jiaotong University, 2007. (in Chinese)
[9]  李永乐,汪斌,黄林,廖海黎. 平板气动力的CFD模拟及参数研究[J]. 工程力学, 2009,26(3):207-211.
LI Yongle, WANG Bin, HUANG Lin, LIAO Haili. CFD simulation and parameter study on aerodynamic force of flat plate[J]. Engineering Mechanics, 2009, 26(3): 207-211. (in Chinese)
[10] 曾锴,汪丛军,黄本才,周大伟. 计算风工程中几个关键影响因素的分析与建议[J]. 空气动力学学报, 2007,25(4):504-508.
ZENG Kai, WANG Congjun, HUANG Bencai, ZHOU Dawei. Suggestion and analysis of several key factors in computational wind engineering[J]. Acta aerodynamica sinica, 2007,25(4):504-508.(in Chinese)
[11] 安伟胜. 超大跨度分离三箱主梁桥梁抗风性能及气动优化研究[D]. 成都: 西南交通大学, 2011.
AN Weisheng. Wind-Resistent performance and aerodynamic optimization measures for super-long-span bridge with three-box girder[D]. Chengdu, Southwest Jiaotong University, 2007. (in Chinese)
[12] 中交公路规划设计院. JTG/T D60-01-2004 公路桥梁抗风设计规范[S]. 行业标准-交通, 2004.
[13] Matsumoto M., Matsumiya H., Fujiwara S., et al. New Consideration on Flutter Properties basing on SBS -Fundamental Flutter Mode, Similar Selberg’s Formula, Torsional Divergence Instability,and New Coupled Flutter Phenomena affected by Structural Coupling: BBAA VI International Colloquium on:Bluff Bodies Aerodynamics & Applications, Milano, Italy, 2008[C].
[14]  Selberg A. Oscillation and aerodynamic stability of suspension bridges[J]. ACTA Plytechnica Scandinavica, Civil Engineering and Construction Series 13, 1961.

PDF(2364 KB)

Accesses

Citation

Detail

段落导航
相关文章

/