基于小波脊线的滚动轴承故障诊断方法

姜万录1, 2,李宁宁1, 2,朱 勇1, 2

振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 1-6.

PDF(2108 KB)
PDF(2108 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 1-6.
论文

基于小波脊线的滚动轴承故障诊断方法

  • 姜万录1, 2,李宁宁1, 2,朱  勇1, 2
作者信息 +

Wavelet ridges-based fault diagnosis method for rolling bearing

  • JIANG Wan-lu1, 2,LI Ning-ning1, 2,ZHU Yong1, 2
Author information +
文章历史 +

摘要

滚动轴承发生故障时的振动信号会呈现丰富的非线性动力学特征。基于小波脊线对非线性、非平稳信号分析优势,提出了基于小波脊线的混沌程度刻画方法用于滚动轴承多类故障诊断。通过对故障振动信号共振频带包络信号提取小波脊线,并与故障振动信号K熵对比。结果表明,小波脊线不仅能识别滚动轴承故障类型,亦能由小波脊线表征的混沌程度反映故障严重与否。

Abstract

There are abundant nonlinear dynamic characteristics appearing in vibration signals when faults happen on the rolling bearing. According to the advantages of the wavelet ridges in analyzing nonlinear and non-stationary signals, a novel method for the chaotic degree depiction based on the wavelet ridges is proposed in this paper. And it is applied to diagnose multi-type faults of the rolling bearing. The wavelet ridges are extracted from the envelope signal of the resonance vibration frequency band of fault vibration signals. Moreover, the Kolmogorov entropies are calculated from the fault vibration signals of rolling bearing in order to compare with the wavelet ridges. The results indicate that the wavelet ridges not only can identify the fault types of the rolling bearing, but also can reflect the severity degrees of the faults by means of the chaotic degrees depicted from them.
 

关键词

混沌刻画 / 小波脊线 / K熵 / 故障诊断 / 滚动轴承

Key words

chaotic degree depiction / wavelet ridge / kolmogorov entropy / fault diagnosis / rolling bearing

引用本文

导出引用
姜万录1, 2,李宁宁1, 2,朱 勇1, 2. 基于小波脊线的滚动轴承故障诊断方法[J]. 振动与冲击, 2015, 34(14): 1-6
JIANG Wan-lu1, 2,LI Ning-ning1, 2,ZHU Yong1, 2. Wavelet ridges-based fault diagnosis method for rolling bearing[J]. Journal of Vibration and Shock, 2015, 34(14): 1-6

参考文献

[1] 张弦, 王宏力. 进化小波消噪方法及其在滚动轴承故障诊断中的应用[J]. 机械工程学报, 2010, 46(15): 76-81.
ZHANG Xian, WANG Hong-li. Evolutionary wavelet denoising and its application to ball bearing fault diagnosis [J]. Chinese Journal of Mechanical Engineering, 2010, 46(15): 76-81.
[2] 冯辅周, 司爱威, 饶国强, 等. 基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报, 2012, 48(13): 73-79.
FENG Fu-zhou, SI Ai-wei, RAO Guo-qiang, et al. Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy[J]. Chinese Journal of Mechanical Engineering, 2012, 48(13): 73-79.
[3] 吴参, 李兴林, 孙守迁, 等. 混沌理论在滚动轴承故障诊断中的应用[J]. 轴承, 2013 (1): 60-64.
WU Can, LI Xing-lin, SUN Shou-qian, et al. Application of chaos theory in fault diagnosis of rolling bearings[J]. Bearing, 2013(1): 60-64.
[4] 张景超,张金敏,张淑清,等. 基于小波及非线性预测的轴承故障诊断方法[J].仪器仪表学报,2012, 33(1): 127-131.
ZHANG Jing-chao, ZHANG Jin-min, ZHANG Shu-qing, et al. Bearing fault diagnosis method based on wavelet analysis and nonlinear prediction[J]. Chinese Journal of Scientific Instrument, 2012, 33(1): 127-131.
[5] Silva C P, Young A M. Introduction to chaos-based communications and signal processing[C].// Aerospace Conference Proceedings, IEEE, 2000, 1: 279-299.
[6] 姜万录,张淑清,王益群. 混沌运动特征的数值试验分析[J]. 机械工程学报, 2000, 36(10): 13-17.
JIANG Wan-lu, ZHANG Shu-qing, WANG Yi-qun. Numerical experimental analysis for chaotic motion characteristics[J]. Chinese Journal of Mechanical Engineering, 2000, 36(10): 13-17.
[7] Jiang Wan-lu. Orthogonal wavelet packet analysis based chaos recognition method[J]. Frontiers of Electrical and Electronic Engineering in China, 2006, 1(1): 13-19.
[8] 秦毅,秦树人,毛永芳. 基于小波脊线的解调方法及其在旋转机械故障诊断中的应用[J].机械工程学报,2009, 45(2): 232-242.
QIN Yi, QIN Shu-ren, MAO Yong-fang. Demodulation approach based on wavelet ridge and its application in fault diagnosis of rotating machinery[J]. Chinese Journal of Mechanical Engineering, 2009, 45(2): 232-242.
[9] 朱洪俊,王忠. 小波变换对瞬态信号特征信息的精确提取[J]. 机械工程学报, 2005, 41(12): 196-199.
ZHU Hong-jun, WANG Zhong. Accurate extraction for the characteristic information of transient sigal with wavelet transforms[J]. Chinese Journal of Mechanical Engineering, 2005, 41(12): 196-199.
[10] Delprat N, Escudie B, Guillemain P, et al. Asymptotic wavelet and gabor analysis: extraction of instantaneous frequencies[J]. IEEE Transactions on Information Theory, 1992, 38(2): 644-664.
[11] Carmona R A, Hwang W L, Torresani B. Characterization of signals by the ridges of their wavelet transforms[J]. IEEE Transactions on Signal Processing, 1997, 45(10): 2586-2590.
[12] Mallat S. A wavelet tour of signal processing (3rd)[M]. Burlington:Academic Press, 2009: 89-134.
[13] The case western reserve university bearing data center. Bearing data center fault test data[EB/OL]. http://www. eecs.cwru.edu/laboratory/bearing,201l.
[14] Jiang W L, Spurgeon S K, Twiddle J A, et al. A wavelet cluster-based band-pass filtering and envelope demodulation approach with application to fault diagnosis in a dry vacuum pump[J]. Journal of Mechanical Engineering Science, 2007, 221(11): 1279-1286.
[15] 姜万录,陈东宁,姚成玉.关联维数分析方法及其在液压泵故障诊断中的应用[J].传感技术学报,2004,17(1): 62-65.
JIANG Wan-lu, CHEN Dong-ning, YAO Cheng-yu. Coorelation dimension analytical method and its application in fault diagnosis of hydraulic pump[J]. Sensors and Actuators,2004, 17(1): 62-65.
[16] Craig C, Neilson R D, Penman J. The use of correlation dimension in condition monitoring of systems with clearance[J]. Journal of Sound and Vibration, 2000, 231(1): 1-17.
[17] 张进, 冯志鹏, 褚福磊. 滚动轴承故障特征的时间-小波能量谱提取方法[J]. 机械工程学报, 2011, 47(17): 44-49.
ZHANG Jin, FENG Zhi-peng, CHU Fu-lei. Extraction of rolling bearing fault feature based on time-wavelet energy spectrum[J]. Chinese Journal of Mechanical Engineering, 2011, 47(17): 44-49.

PDF(2108 KB)

691

Accesses

0

Citation

Detail

段落导航
相关文章

/