针对将线谱混沌化控制方法用于工程实际时存在如何在隔振系统中实现持续的混沌运动难题,采用参数驱动广义混沌化同步原理控制方法驱动硬弹簧Duffing隔振系统的混沌同步,实现隔振系统在较宽参数范围内产生稳定的混沌运动;分析Duffing系统的跳跃性对广义混沌同步影响,在跳跃区间初始条件不同系统产生的混沌吸引子亦不同,而不同混沌吸引子又决定系统不同的隔振效果。
Abstract
In order to overcome the difficulty that how to maintain the chaotic motion in the vibration isolation system(VIS), which arises from the practical implements of the chaotic technique for line spectra reduction, a parameter-driven method for generalized synchronization of chaos using an external chaotic signal to drive the harden Duffing VIS was presented to make the chaotic motion persistent in the system, and the chaotic motion was stability in a wide parameter range. Meanwhile, the effect of the jumping of the Duffing system on the generalized synchronization of chaos was analyzed, and the results showed that the initial conditions can make the system produce different chaotic attractor in the jump region, and different chaotic attractors make different effects of VIS.
关键词
Duffing系统 /
混沌同步 /
混沌吸引子 /
线谱
{{custom_keyword}} /
Key words
Duffing system /
synchronization of chaos /
attractors of chaos /
line spectra
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 楼京俊.基于混沌理论的线谱控制技术研究[D].武汉:海军工程大学,2006.
[2] 俞翔.非线性隔振系统混沌动力学特性研究[D].武汉:海军工程大学,2008.
[3] 朱石坚,姜荣俊,何琳.线谱激励的混沌隔振研究[J].海军工程大学学报,2003,15(1):19-22.
ZHU Shi-jian, JIANG Rong-jun, HE Lin. Research on the chaos vibration-isolation of line spectra excitation[J]. Journal of Naval University of Engineering,2003,15(1): 19-22.
[4] 张振海,朱石坚,楼京俊.基于跟踪混沌化方法的线谱控制技术研究[J].振动与冲击,2011,30(7):40-44.
ZHANG Zhen-hai, ZHU Shi-jian, LOU Jing-jun. Line spectra reduction of a vibration isolation system based on tracking chaotification method[J]. Journal of Vibration And Shock,2011,30(7): 40-44.
[5] 张振海,朱石坚,何其伟.基于反馈混沌化方法的多线谱控制技术研究[J].振动工程学报,2012,25(1):30-37.
ZHANG Zhen-hai, ZHU Shi-jian, HE Qi-wei. Multi-line spectra reduction of vibration isolation system basedon chaotification method[J]. Journal of Vibration Engineering,2012,25(1): 30-37.
[6] 过榴晓,徐振源.关于非线性系统两类广义混沌同步存在性的研究[J].物理学报,2008,57(10):6086-6092.
GUO Liu-xiao, XU Zhen-yuan. The Existence of two types of generalized synchronization of nonlinear systems[J]. Acta Physica Sinica,2008,57(10): 6086-6092.
[7] Qin Wei-yang, Jiao Xu-dong, Sun Tao. Synchronization and anti-synchronization of chaos for a multi-degree-of-freedom dynamical system by control of velocity[J]. Journal of Vibration and Control,2014, 20(1):146-152.
[8] 张莹,雷佑铭,方同.混沌吸引子的对称破缺激变[J].物理学报,2009,58(6):3799-3805.
ZHANG Ying, LEI You-ming, FANG Tong. Symmetry breaking crisis of chaotic attractors[J]. Acta Physica Sinica, 2009,58(6): 3799-3805.
[9] Wen Gui-lin. Line spectra reduction and vibration isolation via modified projective synchronization for acoustic stealth of submarines[J]. Journal of Sound and Vibration, 2009,324(3/5): 954-961.
[10] 李盈丽.双层非线性隔振系统的动力学分析及时延混沌化[D].长沙:湖南大学,2012.
[11] 俞翔,朱石坚,刘树勇.广义混沌同步中的多稳定同步流形[J].物理学报,2008,57(5):2761-2769.
YU Xiang, ZHU Shi-jian, LIU Shu-yong. Multi-stable synchronization manifold in generalized synchronization of chaos[J]. Acta Physica Sinica,2008,57(5): 2761-2769.
[12] 陈关荣,汪小帆.动力系统的混沌化-理论、方法与应用[M].上海:上海交通大学出版社,2006.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}