基于迭代更新策略的快速高精度频率估计方法

高志峰1,2, 彭喜元1,彭 宇1

振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 16-20.

PDF(1418 KB)
PDF(1418 KB)
振动与冲击 ›› 2015, Vol. 34 ›› Issue (14) : 16-20.
论文

基于迭代更新策略的快速高精度频率估计方法

  • 高志峰1,2, 彭喜元1,彭  宇1
作者信息 +

Fast and accuracy frequency estimation with a gradient-based iterative algorithm

  • GAO Zhi-feng1,2,PENG Xi-yuan1,PENG Yu1
Author information +
文章历史 +

摘要

基于滤波器组的谱估计方法用于信号频率估计频率虽分辨率高,但滤波器组中心频率格点划分缺乏先验知识,谱峰搜索过程存在计算复杂、信号不匹配问题。基于MVDR(Minimum Variance Distortionless Response)谱构造指标函数,将谱峰搜索问题等价为标量指标函数局部极小值问题求解,通过构造一组最速下降方向及自适应步长对极值频率迭代更新,实现对信号频率的直接估计。新算法不仅回避中心频率点组划分及传统的谱峰搜索,且有效缓解信号不匹配,估计精度、计算效率更高。对单成分信号频率估计精度与计算量进行新算法与现有算法的性能比较,并用于多成分信号频率估计。

Abstract

The nonparametric spectral estimation algorithms are applied to frequency estimation for their  significant performance. To avoid the signal mismatch problem and to improve the frequency estimation accuracy, a new iterative algorithm is presented based on the minimum variance distortionless response (MVDR) spectrum. With given initial frequency, searching directions and adaptive steps are derived to update the frequency sequence, which converges to the local spectral peak as the scalar gradient function goes to zero. Without the spectral peak searching on predefined analysis frequency grids, the computation is saved. The proposed algorithm is also applied to multiple component frequency estimation, with carefully selected initial frequencies.

关键词

频率估计 / 迭代算法 / 自适应步长 / MVDR

Key words

frequency estimation / iterative algorithm / adaptive step / MVDR

引用本文

导出引用
高志峰1,2, 彭喜元1,彭 宇1. 基于迭代更新策略的快速高精度频率估计方法[J]. 振动与冲击, 2015, 34(14): 16-20
GAO Zhi-feng1,2,PENG Xi-yuan1,PENG Yu1. Fast and accuracy frequency estimation with a gradient-based iterative algorithm[J]. Journal of Vibration and Shock, 2015, 34(14): 16-20

参考文献

[1] Stoica P, Moses R L.Spectral analysis of signals[M]. Pearson Prentice Hall, 2005.
[2] Li J, Stoica P. Roubust adaptive beamforming[M]. New York:Wiley, 2005.
[3] 胡爱军,朱瑜.基于改进峰值搜索法的旋转机械瞬时频率估计[J].振动与冲击,2013,32(7):113-117.
HU Ai-jun, ZHU Yu. Instantaneous frequency estimation of a rotating machinery based on an improved peak search method [J]. Journal of Vibration and Shock,2013, 32(7):113-117.
[4] 沈廷鳌,涂亚庆,张海涛,等.一种改进的自适应格型陷波频率估计算法及其收敛性分析[J].振动与冲击,2013, 32(24): 28-32.
SHEN Ting-ao,TU Ya-qing, ZHANG Hai-tao, et al.A modified frequency estimation method of adaptive lattice notch filter and its convergence analysis[J].Journal of Vibration and Shock,2013, 32(24):28-32.
[5] Rife C D, Boorstyn R R. Single-tone parameter estimation from discrete-time observations[J]. IEEE Trans. On Information Theory, 1974,20(5): 591-598.
[6] Stoica P, Nehoral A.Statistical analysis of two non-linear least squares estimators of sine waves parameters in the colored noise [J]. Proceddings of the ICASSP, 1998, 4:2408-2411.
[7] 胡文彪,夏立,向东阳,等. 一种改进的基于相位差法的频谱校正方法[J]. 振动与冲击,2012, 31(1): 162-166.
HU Wen-biao, XIA Li, XIANG Dong-yang, et al. An improved frequency spectrum correction method based on phase difference correction method[J]. Journal of Vibration and Shock, 2012, 31(1): 162-166.
[8] Lin H, Ding K. Energy based signal parameter estimation method and a comparative study of different frequency estimators [J]. Mechanical Systems and Signal Processing, 2011, 25:452-464.
[9] Fu H, Kam P. Sample autocorrelation function based frequency estimation of a single sinusoid in AWGN[C]. Vehicular Technology Conference, IEEE 75th, 2012:1-5.
[10] Aboutanios E, Mulgrew B. Iterative frequency estimation by interpolation on Fourier coefficients[J].IEEE Trans. Signal Processing, 2005, 53:1237-1242.
[11] Jackson L, Tufts D, Soong F, et al. Frequency estimation by linear prediction[J].IEEE International Coference on Acoustics,Speech and Signal Processing,1978, 3:352-356.
[12] Kay S. A fast and accurate single frequency estimator[J]. IEEE Transaction on Acoustics,Speech and Signal Processing, 1989,37(12):1987-1990.
[13] Lui K, So K. Two-stage autocorrelation approach for accurate-single sinusoidal frequency estimation[J]. Signal Processing, 2008, 88(7):1852-1857.
[14] CaoY,Wei G, Chen F. A closed-form expanded autocorrelation method for frequency estimation of a sinusoid[J]. Signal Processing, 2012, 92:885-892.
[15] Quinn B G, Fernandes J M. A fast efficient technique for the estimation of frequency[J]. Biometrika, 1991,78(3): 489-497.
[16] Schmidt R. Multiple emitter location and signal parameter estimation[C]. Proc. RADC spectrum estimation Workshop, 1979:243-258.
[17] Roy R,Kailath T. Esprit-estimation of signal parameters via rotational invariance techniques[J]. IEEE Trans. Acoust. Speech Signal Process., 1989, 37: 988-995.
[18] Stoica P, Jakobsson A, Li J. Matched-filter bank interpretation of some spectral estimators[J]. IEEE Trans. Signal Processing, 1998,66: 45-59.
[19] Cox H. Resolving power and sensitivity to mismatch of optimum array processors[J]. Journal of the Acoustic Society of America,1973, 54: 771-785.
[20] Benesty J, Chen J, Huang Y. A generalized MVDR spectrum [J]. IEEE Signal Process, 2005, 12(12): 827- 830.
[21] Stocia P, Li H, Li J.A new derivation of the APES filter[J]. IEEE Signal Process, 1999, 6(8):205-206.
[22] Zheng C, Zhou M, Li X. On the relationship of non- parametric methods for coherence function estimation[J]. Signal Processing, 2008, 88:2863-2867.
[23] Peng Y, Gao Z, Peng X. MVDR spectral estimation by spectral peak dichotomous search[C].I2MTC, 2012:1692- 1696.

PDF(1418 KB)

608

Accesses

0

Citation

Detail

段落导航
相关文章

/